
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

Chair of Software Engineering

Security Analysis of Instant Messenger TorChat

Master’s Thesis

Student: Rain Viigipuu

Student code: 072125

Supervisor: Alexander Norta, PhD

External Supervisor: Arnis Paršovs, MSc

TALLINN 2015

Abstract

TorChat is a peer-to-peer instant messenger built on top of the Tor

network that not only provides authentication and end-to-end encryption,

but also allows the communication parties to stay anonymous. In addition,

it prevents third parties from even learning that communication is taking

place.

The aim of this thesis is to document the protocol used by TorChat and

to analyze the security of TorChat and its reference implementation. The

work shows that although the design of TorChat is sound, its implementation

has several flaws, which make TorChat users vulnerable to impersonation,

communication confirmation and denial-of-service attacks.

2

Contents

1 Introduction 6

2 Tor and Hidden Services 8

2.1 Hidden Services . 9

2.1.1 Hidden service address . 11

3 TorChat 12

3.1 Managing Contacts and Conversations 12

3.2 Configuration Options . 16

4 TorChat Protocol 17

4.1 Handshake . 17

4.2 File Transfers . 18

4.3 Protocol Messages . 19

4.3.1 not implemented . 19

4.3.2 ping . 20

4.3.3 pong . 21

4.3.4 client . 22

4.3.5 version . 22

4.3.6 status . 22

4.3.7 profile name . 23

4.3.8 profile text . 23

4.3.9 profile avatar alpha . 24

4.3.10 profile avatar . 24

4.3.11 add me . 24

4.3.12 remove me . 25

4.3.13 message . 25

4.3.14 filename . 25

4.3.15 filedata . 26

4.3.16 filedata ok . 26

4.3.17 filedata error . 26

4.3.18 file stop sending . 27

3

4.3.19 file stop receiving . 27

5 Analysis Methodology 28

5.1 Is the communication protected in transit? 28

5.2 Is the communication protected against abuse from the provider? . 28

5.3 Can someone impersonate the user? 28

5.4 Are past communications secure if the user’s keys are stolen? 29

5.5 Is the source code available, crypto design well-documented, open

to independent review? . 29

5.6 Can the service be used anonymously? 29

5.7 Who has access to the user’s profile information? 29

5.8 Who has access to the user’s presence-related information? 29

5.9 Who has access to information on the user’s contacts? 30

5.10 Is the user protected against denial-of-service attacks? 30

5.11 Which forensic evidence does the software leave on the user’s device? 30

5.12 Is the software available from a trusted source and can its integrity

be verified? . 30

6 Security Analysis 31

6.1 Is the communication protected in transit? 31

6.2 Is the communication protected against abuse from the provider? . 31

6.3 Can someone impersonate the user? 32

6.3.1 Impersonating the Tor hidden service 32

6.3.2 Spoofing the pong message 33

6.3.3 Impersonation at the GUI level 34

6.4 Are past communications secure if the user’s keys are stolen? 35

6.5 Is the source code available, crypto design well-documented, open

to independent review? . 35

6.6 Can the service be used anonymously? 36

6.6.1 Deanonymization by a malicious guard node 36

6.6.2 Deanonymization by message contents 37

6.7 Who has access to the user’s profile information? 37

6.8 Who has access to the user’s presence-related information? 38

4

6.9 Who has access to information on the user’s contacts? 39

6.10 Is the user protected against denial-of-service attacks? 39

6.10.1 Memory exhaustion through network read 40

6.10.2 Memory exhaustion through a chat message 40

6.10.3 Attacking via the profile name message 40

6.10.4 Attacking via multiple add me messages 41

6.10.5 Attacking via multiple filename messages 41

6.11 Which forensic evidence does the software leave on the user’s device? 42

6.12 Is the software available from a trusted source and can its integrity

be verified? . 43

6.12.1 Linux . 43

6.12.2 Windows . 44

7 Summary of Findings 45

8 Conclusions 46

5

1 Introduction

In today’s world, secure communication over the Internet is a challenging task.

Recently it became known that the architecture of the most popular instant

messenger Skype has been redesigned to enable communication surveillance on

its users [1]. The U.S. government is using secret warrantless requests to

obtain personal information stored by service providers [2] and is obtaining

encryption keys from service providers [3] by using legal means. Another aspect

recently realized by society is that privacy cannot be achieved just by securing

communication content. The communication metadata that shows the parties

involved in the communication and their location might be even more sensitive as

information than the content of communication and thus it must be protected as

well [4].

Therefore, in order to achieve communication privacy, we need a solution that

would provide end-to-end encryption between communication parties and make

collecting metadata very difficult.

The TorChat [5] instant messenger is a technology built on top of Tor [6] that not

only provides end-to-end encryption between TorChat clients, but also hides the

location of TorChat users and prevents third parties from determining the parties

with whom a TorChat client is communicating.

Allegedly, TorChat has been used to provide secure communication between a

doctor and his patients [7], and, as recently revealed by court documents, to

protect the location of the mastermind behind the notorious marketplace Silk

Road [8].

It is not easy to estimate the size of the current TorChat user base. A study that

was carried out on February 4, 2013, made use of the Tor hidden service address

harvesting method described in [9], found that among the harvested 39,824 unique

Tor hidden service onion addresses, 385 were TorChat clients [10].

The security guarantees provided by TorChat have not been analyzed before and

the only source of a description for the TorChat protocol has been the source code

of TorChat reference implementation.

6

The goal of this paper is to describe the protocol used by TorChat, provide security

analysis of the TorChat protocol and report on the vulnerabilities found in the

audit of the latest TorChat original Python implementation version 0.9.9.553.

Note that there are also other TorChat implementations available. TorChat2 [11],

which is a Pidgin IM plugin, jTorChat [12] – TorChat implementation in Java,

and Ruby-torchat [13] – TorChat implementation in Ruby. However, this paper

focuses only on the TorChat original Python implementation, which is available

for MS Windows and is included in most Linux distributions. Therefore, it is

believed to have the largest user base. It also serves as a reference implementation

of the TorChat protocol, which means that all other implementations have been

developed based on the Python implementation.

The rest of the thesis is organized as follows. The next section introduces the

Tor anonymity network and Tor hidden services. Section 3 gives an overview of

TorChat and its features from the user’s perspective. Section 4 documents the

protocol as used by TorChat. Section 5 defines the methodology for analyzing

the security of instant messengers. Section 6 provides a security analysis of the

TorChat instant messenger and its original Python implementation by answering

the questions defined in Section 5. Finally, Section 7 provides a summary of

findings and Section 8 concludes the work.

7

2 Tor and Hidden Services

This section provides a short description of Tor and the Tor hidden services feature.

The reader is welcome to skip over this section if he is familiar with Tor. The

remaining part of the thesis assumes that the reader knows how Tor and its

location-hidden services work.

Tor is a software program that allows people to keep their Internet activity

private and anonymous. It also provides the tools and platform for developers

who can create new applications with built-in encryption, privacy and anonymity

features. Those applications not only allow users to use Internet services

anonymously, but also allow them to provide different kind of Internet services such

as websites, instant messaging services or other services without compromising

their privacy.

Privacy on the Internet can be achieved partially by using Internet services over

encrypted connections. In this way, only the data moving over the network is

private. However, the metadata that reveals the source and the destination of

the data and other properties that are not encrypted can still be monitored and

analyzed. The Tor network solves that problem by encrypting not only the data

moving over the network, but the metadata as well. This makes it impossible for

interested parties (governments, intelligence agencies, companies, law enforcement,

criminals, etc.) to analyze the network traffic in order to determine the user’s

behaviour and interests.

To achieve that, the Tor client creates a private secure pathway called the Tor

circuit through the Tor network to the destination. The circuit is made out of

three Tor nodes. The circuit is extended one hop at a time and each node only

knows where the data came from (the previous node) and where it should go (the

next node). No single node knows all the nodes in the circuit. The client negotiates

a separate set of encryption keys for each hop in the circuit to make sure that the

connections could not be traced.

When the user wants to use a regular Internet service anonymously, the connection

has to exit from the Tor network at some point. This is done through an exit node,

8

+

+

+ +

+

encrypted connection

unencrypted connection

+ Tor nodeA

BB

Figure 1: Network traffic moving through the Tor network from A to B.

which is the last node of the Tor circuit. From that node forward the connection is

encrypted only when the destination service supports encrypted communication.

The way that traffic moves through the Tor network is illustrated in Figure 1.

2.1 Hidden Services

Tor location hidden services is a feature of Tor that enables users to offer various

TCP services without revealing their location. Other Tor users can connect

to those services without knowing the service provider’s network identity and

without revealing their own. To achieve this goal, Tor’s rendezvous protocol is

used [14].

When a Tor client is configured to provide a hidden service and is launched for

the first time, it generates a 1024-bit RSA key pair. From the public key it derives

a hidden service address that is 16 characters long; this is also called an onion

address.

In order to be reachable to other Tor users, a hidden service has to advertise its

existence in the Tor network. To do this the hidden service randomly picks some

9

Tor relays, builds circuits to them and publishes its hidden service descriptor in

the public directory. The descriptor contains the public key of the hidden service

and a list of introduction points where the service can be reached. Since a full Tor

circuit is established between the hidden service and the introduction point, the

IP address of the hidden service is hidden from the introduction point.

If someone wants to connect to the hidden service, he needs to know the onion

address of the service. After the client has obtained the onion address of the service

(by some out-of-band means), he can download the hidden service descriptor from

the public directory. From the descriptor the client can extract the public key of

the hidden service and the list of introduction points through which the service

can be reached. The client chooses one random Tor relay to be the rendezvous

point for itself and the service, builds a Tor circuit to it and sends to it a one-time

secret (rendezvous cookie).

After the rendezvous point is set up the client puts together an introduction

message containing the address of the rendezvous point and the one-time secret.

The client connects to one of the hidden service’s introduction points via the Tor

circuit and sends the introduction message requesting it to be sent to the hidden

service.

The hidden service receives the introduction message, decrypts it with its private

key and finds information about the rendezvous point and the one-time secret.

The hidden service creates a circuit to the rendezvous point and sends a message

with the one-time secret.

The rendezvous point notifies the client that a connection has been established

with the hidden service. Now, the client and the hidden service can use their

circuits to the rendezvous point to communicate with each other. The rendezvous

point simply relays the messages from the client to the hidden service and the

other way around. Since the messages are end-to-end encrypted, the rendezvous

point cannot learn the content of the messages.

10

2.1.1 Hidden service address

In the Tor network, hidden services are identified and accessed by their so-called

onion addresses. An onion address is a 16-character hash with the suffix “.onion”.

The 16-character hash is computed as follows. The SHA-1 hash is calculated

from the hidden service’s DER-encoded ASN.1 RSA public key (as specified in

PKCS.1) [15, Section 0.3]. The hash will be 160 bits long. The first half of the

hash (80 bits long) is encoded to Base32, so it will only contain the digits 2-7, the

letters a-z, and will be exactly 16 characters long.

The reason why onion addresses are hashes and not human meaningful names is

described in Zooko’s Distnames essay. The essay argues that a system giving

out names in a network protocol has three desirable properties [16]: “human

meaningful” – i.e. highly memorable for human beings, “decentralized” – i.e.

there is no centralized authority to hold the meaning of a name, and “secure” –

i.e. there is only one unique entity to which the name maps.

The essay states that a name system cannot have all three properties at the

same time, but only two: decentralized and human meaningful (for example

nicknames that people choose for themselves), secure and human meaningful (for

example the current DNS system) or secure and decentralized (OpenPGP has these

properties).

Onion addresses have been chosen to be secure and decentralized and therefore

have the disadvantage of not being meaningful for humans. The reason for

that kind of choice is that while the onion addresses are secure, they are also

self-authenticating. That means that when a client gets an onion addresses and

requests the descriptor from the hidden service directory service, then it also

receives the public key of the hidden service and can derive the onion address

from it. It allows the client to make sure that it is encrypting and sending the

data to the correct hidden service.

11

3 TorChat

TorChat is a peer-to-peer instant messaging solution built on top of Tor and its

location-hidden services feature. It can be used to interactively chat and exchange

files between participants.

On a very high level view, TorChat works by making every TorChat client available

through the Tor network as a hidden service. The onion address of the hidden

service is used as a unique identifier in TorChat. The onion address is a domain

name allowing anyone to establish an end-to-end encrypted and authenticated

connection over the Tor network with the service behind that address.

TorChat is written in Python and uses the wxPython library to draw GUI objects.

To provide end-to-end encryption and anonymity features, TorChat relies on the

official Tor client software.

TorChat has been designed to be simple to use. In case of the Windows version of

TorChat, everything required to run TorChat is included in the TorChat Windows

archive. On other platforms (Linux and Mac), TorChat requires the installation of

the Tor client and wxPython libraries. Apart from that there is no configuration

required – the Tor hidden service is started by TorChat and the key pair for the

hidden service is generated when TorChat is launched for the first time.

However, the last update to the TorChat main code base was made on June 12,

2013. The executable packages have not been updated either. Because of this the

latest TorChat Windows package available for download ships with an outdated

Tor client that cannot be used anymore to connect to the Tor network.

3.1 Managing Contacts and Conversations

TorChat’s user interface is very simple and minimalistic. The TorChat main

window holds the contact list and only has one button for changing the status (see

Figure 2). The application menu becomes available with a right-click somewhere

inside the contact list window (see Figure 2).

12

Figure 2: TorChat main window with the application menu opened.

After TorChat is started for the first time it adds to the contact list the user’s

own TorChat contact, with the profile name set to “myself” (see Figure 2). This

means that it is easy for the user to find his TorChat identifier and see whether he is

online, i.e., whether his onion address is reachable over the Tor network, since after

the TorChat client is started, it may take a while until Tor circuits are established

and the hidden service descriptor is published in the Tor directory.

To add a contact the user must select the “Add contact...” entry from the

application menu (see Figure 2). The “Add new contact” window will open (see

Figure 3). There, the user can enter a peer’s TorChat identifier, profile name and

introduction message, which will be sent to the contact. If the profile name is

omitted (the field is left empty), the profile name will be set to one received from

the peer.

To remove a contact the user must select the “Delete contact...” entry from the

application menu. After the user confirms the deletion, the remote peer will be

informed about a deletion request and the corresponding contact will be deleted

from the peer’s contact lists. Note that if the peer is not online, the deletion

request will not reach the peer. Once the peer comes back online, the contact will

be added back to the peer’s contact list.

A user can see his contact’s profile information by hovering a mouse cursor over the

contact’s entry in the contact list. The profile information always shows the latest

profile name, profile text and avatar received from the contact (see Figure 4).

13

Figure 3: TorChat “Add contact” window.

Figure 4: Contact’s profile information box.

The icon in front of the contact indicates the status of the contact. If the icon is

grey, then the contact is offline. If the icon is a blue ball/globe, then this means

that TorChat is in the middle of a handshake process with that contact. If the icon

is green, then the contact is online. The icon can also be yellow and red, which

means that the contact is online, but has set his availability status to “away” or

“away for an extended period”, respectively.

To start a conversation with a contact, the user must double-click on the

contact’s name. This will open a conversation window with that contact (see

Figure 5). The messages entered for a contact who is offline will be saved in the

~/.torchat/<TorChat identifier> offline.txt file and sent to the peer when

he comes back online. In the conversation window these messages will be marked

with the “[delayed]” prefix.

14

Figure 5: Conversation window.

The conversation window has its own menu, which can be accessed by right-clicking

in the upper part of the window. The menu allows sending files to that contact,

edit the profile name shown in the contact list and turn on/off message logging

(off by default). If logging is enabled then the conversation with the peer is saved

in the ~/.torchat/<TorChat identifier>.log file.

To send a file the user must select the “Send file...” entry from the application

menu. Files sent from contacts are automatically saved as temporary files in

~/.torchat/torchat incoming <unique identifier>. The user receiving the

file can click on the “Cancel” button to stop the download and delete the temporary

file or click the “Save as...” button, which will save the file and remove the

temporary file (see Figure 6).

Figure 6: File transfer window (receiving in progress).

15

3.2 Configuration Options

TorChat can be configured using the “Settings” dialog of the application menu.

The settings are stored in the ~/.torchat/torchat.ini configuration file, which

can also be edited with a text editor.

The TorChat’s settings dialog has three tabs: “Network”, “User interface” and

“Misc” (see Figure 7). Under the “Network” tab the user can change the

network configuration stored in torchat.ini. There is no need to modify the

default network settings unless the user wants to run several TorChat clients in

parallel [17].

The “User interface” tab can be used to specify whether the TorChat contact

window should be minimized when the application starts, whether a new window

should be opened automatically, and whether the application should notify the user

about new messages. It can also be used to choose the interface language.

Under the “Misc” tab the user can configure whether temporary files should be

stored inside the data directory (the folder from which TorChat was executed), in

a default location in the operating system or a location specified by the user.

Figure 7: TorChat configuration window.

16

4 TorChat Protocol

This section describes the protocol used by TorChat. The description provided

here has been obtained by examining the source code.

4.1 Handshake

Before two parties can start exchanging messages they must perform the handshake

process. The goal of the handshake process is to establish trusted connections

between parties, so that after the process is completed, both parties know who

they are communicating with, i.e., which Tor hidden service the other party

controls.

Tor network

1. ping vrn54zduj27fkmmq BigRandomNumberForClientB

3. pong BigRandomNumberForClientA

2. ping putzd3vd6ytdrpta BigRandomNumberForClientA

4. pong BigRandomNumberForClientB

vrn54zduj27fkmmq.onion

Party A

putzd3vd6ytdrpta.onion

Party B

Figure 8: Handshake process.

The handshake process (Figure 8) between TorChat clients party A and B:

1. Party A knows party B’s onion address (established by out-of-band means).

Party A establishes a TCP connection over the Tor network with party B’s

onion address to port 11009. Party A sends a ping message with its own

onion address and a large random number. At this point party A knows with

whom he has established a secure outgoing connection. However, party B

does not know who is behind the anonymous incoming connection.

17

2. Party B establishes a TCP connection over the Tor network with party

A’s onion address received in step 1 to port 11009. Using the established

connection, party B sends a ping message with its onion address and a new

random number generated by party B.

3. Party B sends a pong message with the random number received in step 1

to party A. At this point party B knows with whom the secure outgoing

connection has been established and party A knows that the anonymous

incoming connection belongs to party B, because only party B could have

replied with the same random number as sent in step 1.

4. Party A takes party B’s random number received in step 2 and sends it in

a pong message using the outgoing connection established in step 1. At

this point party B also knows that the anonymous incoming connection

established in step 1 belongs to party A, since only party A could have

replied with the random number sent by party B in step 2.

After the handshake is completed, there are two end-to-end encrypted TCP

connections between party A and party B and both party A and party B know

the identity (onion address) of the other party.

4.2 File Transfers

File transfers are implemented using file* protocol messages. The files are split

into blocks and sent using filedata protocol messages. To speed up file transfer,

several blocks can be sent before the acknowledgement filedata ok message is

received. The block size used by TorChat is set to 8192 bytes and the number of

blocks sent before receiving the acknowledgement is 16.

In general, the TorChat client accepts protocol messages only on incoming

connections. The exceptions are all file* protocol messages, which are accepted

on both incoming and outgoing connections. The TorChat client on the incoming

connecton only sends filename and filedata protocol messages. This is done to

avoid delaying the chat messages.

18

4.3 Protocol Messages

TorChat protocol messages are exchanged over TCP sockets. The messages

are separated by a newline character ‘\n’ (0x0a in hex). Whenever a full

message (ending with a newline character) is received, it should be processed

immediately.

The protocol message format is as follows:

<command> <optional parameters> <UTF-8 encoded data>

The <command> part may contain only lowercase characters a-z and the underscore

character ‘ ’. The command and encoded data are separated by a space (0x20 in

hex). The data part is a UTF-8 encoded binary string.

Backslash and newline characters inside the data part must be escaped. The

backslash character ‘\’ (0x5c in hex) must be replaced with two characters “\/”

(0x5c and 0x2f in hex) and the newline character ‘\n’ (0x0a in hex) must be

replaced by two characters “\n” (0x5c and 0x6e in hex). The opposite replacement

must be done after receiving a message.

In addition to a command, a message could also contain parameters for the

command. The parameters are separated between other parameters and data

with a space. Parameters cannot contain a space and are subject to the same

formatting rules as commands.

The following subsections describe protocol messages, their purpose, the time when

they can be sent and how they should be processed when received by the client

application.

The words “must” and “should” are used interchangeably and do not have any

special meaning.

4.3.1 not implemented

If a peer receives an unknown message, he should send not implemented over the

outgoing connection. If the outgoing connection does not exist, the connection via

which the unknown message was received should be closed.

19

4.3.2 ping

This message should be sent immediately after establishing an outgoing connection

to a peer. It should contain the peer’s own address without the “.onion” suffix

and a 32-byte random cookie unique for the peer to whom the ping is sent.

Example: ping vrn54zduj27fkmmq 138830801853815824808159869621794

When a peer receives a ping message over the incoming connection he should first

check:

1. If the address in the ping message is 16 characters long and contains valid

Base32 encoding. If the address is not valid then the message should not be

processed and the incoming connection must be closed.

2. If a repeated ping message contains a different address than the previous

ping message received over the same connection then the message should

not be processed and the incoming connection should be closed.

3. If a ping message contains an address that has already been assigned

with another incoming connection for which the handshake process has

been completed then the message should not be processed and the

not implemented double connection message should be sent over the

incoming connection via which the ping message was received, but the

connection should not be closed.

4. If the received ping message contains the peer’s own address, but the cookie

is different from the one expected, the message should not be processed and

the connection over which the message was received should be closed.

Note that after a TorChat client is started it establishes a connection with

its own hidden service. If such a bogus message is received when TorChat

has already established a connection with itself, the case should be handled

by performing the “double connection” check above.

If the checks above succeed then a buddy with the peer’s address specified in the

ping message and the status STATUS OFFLINE should be created. Once the buddy

is created, an outgoing connection should be established with the peer’s address

20

specified in the ping message. Once the outgoing connection is established, the

outgoing connection should be assigned to the buddy and the buddy’s status should

be updated to STATUS HANDSHAKE. Using the outgoing connection established, the

peer should send the following messages:

1. his own ping message;

2. the pong message with the random cookie received in the ping message;

3. client message;

4. version message;

5. profile name and profile text messages (if set);

6. profile avatar alpha and profile avatar messages (if avatar is set);

7. add me message (if the contact is in the peer’s buddy list);

8. status message.

If a repeated ping message is received, but the buddy already has an outgoing

connection over which a pong message has been sent then the ping message

received should be ignored, unless the pong reply from the peer has not been

received yet, in which case the ping message should be sent over the outgoing

connection.

4.3.3 pong

This message should be sent over the outgoing connection as a reply to the ping

message received over the incoming connection. The message must contain the

random cookie received in the ping message.

Example: pong 138830801853815824808159869621794

When a peer receives a pong message over an incoming connection, he must process

it as follows:

1. Extract the random cookie from the message and find the first buddy who

has been ping’ed with this random cookie. If a buddy with the random

cookie cannot be found the pong message should be ignored.

21

2. If the buddy is found the peer must check whether the address assigned to

the buddy is the same address that has been specified in the ping message

received over this incoming connection. If this check fails, the pong message

should be ignored.

If these checks succeed the incoming connection should be assigned to the buddy

and the previous incoming connection (if it exists and is not the same) should be

closed.

4.3.4 client

This message is sent as a reply to the ping message (see Section 4.3.2). The

message must contain the name of the client software.

Example: client TorChat

When received, the peer should assign the received client software name to the

contact.

4.3.5 version

This message is sent in an answer to ping message (see Section 4.3.2). The message

must contain the version string of the client software.

Example: version 0.9.9.553

When received the peer should assign the received version string to the

contact.

4.3.6 status

This message must be sent as a reply to the ping message (see Section 4.3.2)

immediately after the user has changed his status or profile information and

in every 120 seconds. The message can contain three different status values:

“available”, “away” and “xa” where “xa” stands for “away for an extended

period”.

22

Example: status available

When receiving this message, the client should update the status information of

the contact accordingly. If the status message is not received from a peer in 240

seconds the incoming connection should be closed.

4.3.7 profile name

This message is sent as a reply to the ping message (see Section 4.3.2) and to all

peers whenever the user changes his profile information. The message is not sent

if the user has not specified his profile name or the user changes his profile name

to a blank name.

Example: profile_name John Smith

If a client receives this message and the profile name for the peer is not set, the

client should store the profile name in the contact list and show it next to the peer’s

TorChat identifier in the contact window. If a client receives this message, but the

profile name for the peer is already set, the profile name should not be changed,

but the profile name received should be shown when a mouse cursor hovers over

the contact’s entry in the contact window (see Section 3.1).

4.3.8 profile text

This message is sent as a reply to the ping message (see Section 4.3.2) and to all

peers whenever the user changes his profile information. The message is not sent

if the user has not specified his profile text or the user changes his profile text to

a blank text.

Example: profile_text Business consultant with extensive experience

The profile text received in this message should not be stored in the contact list,

but should be shown when a mouse cursor hovers over the contact’s entry in the

contact window (see Section 3.1).

23

4.3.9 profile avatar alpha

This message is sent as a reply to the ping message (see Section 4.3.2) and to all

peers whenever the user changes his avatar. The message is not sent if the user

has not specified his avatar or the user removes his avatar.

This message contains an uncompressed 64*64*8 bit alpha channel. If there is no

alpha channel in the avatar, the message has to be sent without the data part.

This message has to be sent before sending the profile avatar message.

Example: profile_avatar_alpha <alpha channel binary data>

When receiving this message, the client should wait for the peer’s profile avatar

message to construct the avatar.

4.3.10 profile avatar

This message is sent as a reply to the ping message (see Section 4.3.2) and to all

peers whenever the user changes his avatar. The message is not sent if the user

has not specified his avatar or the user removes his avatar.

The message contains an uncompressed 64*64*24 bit image. This message must

be sent after the profile avatar alpha message is sent.

Example: profile_avatar <image data as raw binary data>

When receiving this message, the client should construct an avatar taking into

account the alpha channel received in the profile avatar alpha message and

make the peer’s avatar visible when a mouse cursor hovers over the contact’s entry

in the contact window (see Section 3.1).

4.3.11 add me

This message is sent as a reply to the ping message (see Section 4.3.2) if the peer

is in the sender’s contact list.

Example: add_me

24

4.3.12 remove me

This message is sent to the peer when a user removes the peer from his contact list.

If the peer is not online, this message is not sent. After removing the peer from

the contact list, the peer’s offline message queue file should also be wiped.

Example: remove_me

When receiving this message, the client should remove the peer from the contact

lists and contact window, wipe the peer’s offline message queue file and close the

incoming and outgoing connections associated with the peer.

4.3.13 message

This message is sent to the peer whenever a user has entered text in the

conversation window or after the peer comes online and there are unsent messages

in the offline message queue.

The message may be sent only after the add me message has been sent or when it

is known that the peer is in the receiver’s contact list.

Example: message Hello, how are you?

4.3.14 filename

The filename message is a message that initiates file transfer.

The data part of the message contains information about the file being sent:

• id – identifier generated by the sender that uniquely identifies the file transfer.

• file size – size of the file in bytes.

• block size – specifies the chunk size that will be sent in filedata messages

(the actual filedata messages can contain blocks in a different size).

• file name – specifies the name of the file as stored in the sender’s system.

Every field is separated by a space.

Example: filename 2665323703 11 8192 testfile.txt

25

4.3.15 filedata

This message is used to transport the actual data in blocks of a fixed size. Every

message contains the file transfer identifier, offset in the original file, the lower-case

MD5 hash of the current data block and an arbitrary-size block of the data itself.

Each message should be replied to with the filedata ok message after the receiver

has successfully verified the hash of the data block. The hash of the block is

calculated on the basis of the unescaped data block.

The sender should send only a limited number of blocks ahead of the incoming

filedata ok messages. For example, the sender should send the fifth block only

after the arrival of the first block is confirmed (filedata ok message for the first

block has arrived), the sixth only after the arrival of the second block is confirmed

and so on. The filedata messages must be sent in sequential order.

Example:

filedata 2665323703 0 ee5a58024a155466b43bc559d953e018 line1\nline2

4.3.16 filedata ok

This message is sent as a reply to the filedata message once the receiver has

successfully verified the filedata message. The sender of the file can use this

message to update the file transfer progress bar and learn that more blocks can be

sent.

The message contains the file transfer identifier and the offset position of the block

that has been successfully received.

Example: filedata_ok 2665323703 0

4.3.17 filedata error

The message is sent if there has been a problem receiving the filedata message.

The problem might be that the hash was wrong or the file offset was not the one

26

that was expected (too much ahead of what it should be, meaning that some blocks

have been skipped or lost during a temporary network outage).

The sender must respond to this message by restarting the file transfer at the offset

specified in the message.

The message contains the file transfer identifier and the file offset from which the

file transfer should be resumed.

Example: filedata_error 2665323703 0

4.3.18 file stop sending

The message is sent to the file sender if the receiver has canceled the file transfer.

After this message is received, the sender should stop sending the file. The user

must be notified that the file receiver has canceled the file transfer.

Example: file_stop_sending 2665323703

4.3.19 file stop receiving

The message is sent to the file receiver if the sender has canceled the file transfer or

the sender has received from the receiver the file stop sending message. Once

this message is received, the receiver should not expect any more messages related

to the identified file transfer. All the allocated resources should be freed, temporary

files should be wiped and the user should be notified about the cancellation.

Example: file_stop_receiving 2665323703

27

5 Analysis Methodology

The security analysis methodology presented in this section is based on EFF’s

“Secure Messaging Scorecard” [18], but has additional criteria that concern not

only the privacy of the content of messages but also the privacy of communication

metadata and other issues related to the secure and anonymous use of instant

messaging in practice.

5.1 Is the communication protected in transit?

This criterion considers an attacker who controls the network connection between

the user and the IM service provider. How is the data protected against such

an attacker? What can the attacker learn by observing the connection? Can he

learn whether the user is using the IM service? Can he learn with whom the user

is communicating? Can he tamper with the communication line to execute an

attack, other than the denial-of-service attack?

5.2 Is the communication protected against abuse from the

provider?

This criterion considers a malicious IM service provider whose objective is to

compromise the user’s privacy, communication integrity or even the device on

which the IM software is running. With what is the user trusting the service

provider?

5.3 Can someone impersonate the user?

This criterion should answer whether the user has means to verify the

cryptographic binding between the communication channel and his contact’s

identity or does he have to trust the IM service provider on that.

28

5.4 Are past communications secure if the user’s keys are

stolen?

This criterion considers an attacker who has collected encrypted communication at

any point between the user and the intended recipient and then obtains a long-term

encryption key from the user in order to decrypt collected past communication.

Is forward secrecy used, i.e., is the user’s long-term asymmetric key used in the

signing mode only to establish a short-term encryption key?

5.5 Is the source code available, crypto design well-

documented, open to independent review?

This criterion considers whether the source code of the software is freely available

and whether the design of the software is well-documented.

5.6 Can the service be used anonymously?

Can the user register an IM service account anonymously? Is the user’s connection

IP address concealed from his contacts and from the IM service provider?

5.7 Who has access to the user’s profile information?

This criterion considers how is the user’s profile information protected against

third parties. Is this information available only to the persons in the contact list,

to the IM service provider, or someone else?

5.8 Who has access to the user’s presence-related

information?

This criterion considers both the presence-related information (reveals whether

the user is logged into the IM service) and availability-related information (reveals

the user’s specified status in the IM service, i.e., busy, away, available). Is this

information available only to the persons in the contact list, to the IM service

provider, or someone else?

29

5.9 Who has access to information on the user’s

contacts?

Who, except for the parties involved in the communication, can learn about the

parties in contact?

5.10 Is the user protected against denial-of-service

attacks?

Is the IM service vulnerable to any attack which could be used by an attacker to

deny the user access to the service?

This includes any kind of targeted attacks which result in the messaging client

crashing, intensive CPU or memory usage, or in any other way that creates trouble

for the user using the service.

5.11 Which forensic evidence does the software leave on

the user’s device?

This criterion should answer what kind of IM-related information can be extracted

from the device in case the device falls into the hands of a third party. Things to

look for — contact list, messaging history, logs, keys, file transfer history, offline

message queue, etc.

5.12 Is the software available from a trusted source and

can its integrity be verified?

How is the software made available? Are the distribution methods and channels

trusted? If the binary packages are provided, are there ways to reproduce them?

Are there ways to verify package authenticity?

30

6 Security Analysis

This section gives detailed answers to the questions defined in the previous

section.

6.1 Is the communication protected in transit?

TorChat does not implement its own encryption, but fully relies on the

confidentiality and authenticity guarantees provided by Tor and the Tor hidden

service design.

Adversary eavesdropping on the communication channel between the TorChat

client and the Tor network would see encrypted traffic protected by four layers

of encryption, where the innermost layer contains end-to-end encrypted TorChat

protocol data exchanged between TorChat peers. Every layer is protected by a

128-bit AES key negotiated using 1024-bit RSA and ephemeral DH keys [15].

Therefore, the only information the attacker can learn is that the user is using

Tor. This fact is easy to learn since the entry nodes of the Tor network can be

identified by their IP addresses.

6.2 Is the communication protected against abuse from the

provider?

In the TorChat context we can consider the Tor network to be the IM service

provider. There are several entities involved in establishing a connection between

two Tor hidden services (TorChat peers).

If the hidden service directory in which TorChat’s hidden service descriptor

is published is under an adversary’s control, the adversary can only learn the

same information as the users who are requesting that descriptor. This includes

introduction points which can be used to contact the hidden service, the public

key (onion address) of the hidden service and the time when the descriptor was

published.

31

An adversary operating node which acts as a rendezvous point between TorChat

peers would still have to break the final layer of end-to-end encryption

between TorChat peers. An attack by a rendezvous point is complicated even

further, because rendezvous points are chosen randomly by the Tor client, both

end-points from the perspective of the rendezvous point are anonymous, and a

single rendezvous point would most likely route only one direction of TorChat

communication.

To sum up, if the security assumptions implied by Tor hold, the IM service provider

is not capable of attacking TorChat users.

6.3 Can someone impersonate the user?

The following subsections contain a discussion on several attacks that can be used

to impersonate a TorChat user.

6.3.1 Impersonating the Tor hidden service

For authenticity guarantees TorChat exploits the self-authenticating nature of

onion addresses, where the onion address represents the public key of a hidden

service’s long-term 1024-bit RSA key.

As can be seen from the description of the handshake process (see Section 4.1),

after the handshake is completed both TorChat peers are sure that the opposite

party is in control of the private key corresponding to the onion address.

In order to impersonate a TorChat peer an adversary would have to compromise

the 1024-bit RSA key of the hidden service. The RSA key pair is generated by

Tor when TorChat is first used. In Unix systems the generated key is stored in

the file ~/.torchat/Tor/hidden service/private key, which is readable only

by the user.

While the security of 1024-bit RSA is nowadays considered weak [19], we do not

know of any cases where the 1024-bit RSA key would have been factored. Since

this long-term key is used only for authentication, the use of 1024-bit RSA is

tolerable for now.

32

Alternatively, since the onion address consists of the Base32-encoded first 80 bits of

SHA-1 digest of the RSA public key, an adversary may try to find a different RSA

key which would collide with the same onion address. However, the complexity of

such an attack is estimated to require 280 operations, which is nearly the same as

factoring the 1024-bit RSA key. In case the attacker can find a different RSA key

which produces the same onion address, there would be a race condition with the

legitimate user’s published hidden service descriptor [20].

6.3.2 Spoofing the pong message

As can be seen from the TorChat protocol description (see Section 4.1), a peer

authenticates the incoming connection by checking if the random number received

in the pong message matches the random number that was sent in the ping message

over the outgoing connection. Thus, if the attacker is able to guess the random

number which was sent in the ping message, he can spoof the pong message and

thus impersonate the incoming connection.

In TorChat implementation the random number sent in the ping message is

generated by calling the random.getrandombits(256) method which will return

an integer from 0 to 2256 − 1 generated by the MersenneTwister pseudo-random

number generator. The Python manual states that it should not be used for

security purposes and suggests using a cryptographically secure pseudo-random

number os.urandom() or SystemRandom [21] instead.

Even if the attacker can predict the random number used in the ping message,

the impact of the attack is limited, since the attack has to be executed at a time

when vulnerable victim performs the handshake and before the legitimate peer has

answered with his pong message. Furthermore, in case of successful impersonation

the attacker can only send impersonated messages, but not read the responses.

The exceptions are file transfers which are sent over the incoming connection (see

Section 4.2). Thus, if the attacker convinced the victim to send a file, the file

would be received by the attacker over the victim’s incoming connection.

33

6.3.3 Impersonation at the GUI level

Since TorChat peer identities are onion addresses that are hard to memorize,

TorChat provides the possibility to assign an arbitrary name to a contact which

will be shown next to the TorChat identifier in the contact list. However, the way

it is implemented in TorChat opens the contact list to confusion attacks that may

lead to a successful impersonation attack.

As described in Section 3.1, when the user is adding a new contact, he can specify

the contact’s profile name. If the name is left blank then it is set to the name

specified in the profile name message received from the contact.

This allows the remote peer to set the profile name specified by him if the user

does not specify one when adding the contact. This is not a problem, since adding

the contact is an operation consciously performed by the user and the user has

the opportunity to set the profile name. However, if someone adds the user to his

contact list, then that someone is added to the user’s contact list automatically

and the contact’s profile name is set to the name sent by that someone in the

profile name message. The user has no way to control what gets added to his

contact list.

Thus, if the attacker knows with whom the victim is chatting, the attacker can

generate a similar-looking onion address [22], set the same profile name, and add

the victim to his contact list. This way the victim will have several contacts with

the same contact name and a similar TorChat identifier, which the attacker can

use to start the conversation and trick the user into thinking that the window with

the attacker’s conversation is the intended TorChat peer (see Figure 9).

Figure 9: Two similar-looking TorChat contacts. The second one has been added
automatically by the attacker.

34

One thing that the victim can do to determine the false TorChat identity is to

look at the order of contacts in his contact list. The contacts in the contact list

are ordered so that newly added or edited contacts are moved to the bottom of

the list.

This kind of an attack could be prevented if TorChat asked for confirmation before

adding a contact to the contact list. Note that arbitrary contacts can be added to

the contact list also by exploiting the contact list manipulation flaw described in

Section 6.10.3.

6.4 Are past communications secure if the user’s keys are

stolen?

As already described in Section 6.1, Tor uses layered encryption where every

layer provides forward secrecy, thus preventing an adversary who has obtained

a long-term private key from decrypting previously collected network traffic.

6.5 Is the source code available, crypto design well-

documented, open to independent review?

For both TorChat and Tor, source codes are freely available and open to

independent review. The situation is different regarding the documentation.

Tor has a high-level overview of the main features and principles published on

Tor’s website. The code repository contains specifications which give an in-depth

description of the protocol and the operation of the Tor network.

TorChat, on the other hand, does not have much documentation available. There

is some general information on its GitHub page and there is also some general

documentation regarding the configuration and different working modes available

in the “docs” folder together with the source code. The protocol of TorChat is not

described in any separate document. This paper aims to fix this issue.

35

6.6 Can the service be used anonymously?

The anonymity of any person using TorChat can be reduced to the anonymity

guarantees provided by Tor and the hidden services design. In literature, several

attacks have been described which could be used to locate a Tor hidden service or

a Tor user [9]. The most popular type of attack is traffic confirmation attack.

The subsections below discuss some anonymity aspects that affect specifically

TorChat.

6.6.1 Deanonymization by a malicious guard node

One of the weaknesses of Tor and other low-latency anonymity networks is that

if the attacker can monitor both ends of the communication channel, then he can

correlate the data volume and timing information and compromise anonymity. In

the Tor network this means that the attacker needs to control the circuit’s first and

last relay. In case of hidden services it means that the attacker needs to control

just the entry node chosen by the hidden service, since the other end is already

under the attacker’s control.

If the Tor client always chose a new entry guard for each circuit then Tor would

eventually pick the entry node controlled by the attacker and the user’s anonymity

would be compromised. To protect against this, the Tor client randomly chooses

a fixed relay that will act as an entry guard. The guard node rotation time is

set by the configuration parameter "GuardLifeTime"; by default it is 60 days [23,

Section 3.4.1].

In the configuration file that is shipped with TorChat

(~/.torchat/Tor/torrc.txt), the number of entry guards is set to six

(NumEntryGuards 6). Considering that Tor’s default value is coming from the

directory authority concensus and is currently one or if the number is not found

in the consensus file, it defaults to three [23, Section 3.4.1], then TorChat’s use

of six nodes compared to Tor’s default settings considerably increase the risk of

TorChat user deanonymization and should therefore be reconsidered.

36

6.6.2 Deanonymization by message contents

It is a well-known fact that Tor provides anonymity only at the transport protocol

level. If the user exposes in his TorChat profile or sent messages information that

could be used to identify him, Tor anonymity guarantees are no help.

TorChat users have to be especially careful with the links they receive in

conversations. If Tor is used only by TorChat and other applications go directly

to the Internet, opening a link from the TorChat window can expose the user’s

real IP address to the server hosting the website, which, if under the control of an

attacker, will allow the attacker to find out the TorChat user’s real IP address. To

make it easier to slip TorChat makes all links clickable (see Figure 10).

Figure 10: Clickable links in TorChat.

This is the simplest way to deanonymize a TorChat user. It is not recommended

to remove link clickability, since the user will most likely copy and paste the same

URL into a browser. However, when the user clicks on a link, he should see a

message warning him about the deanonymization risk, with the option to click a

checkbox so as not to see the warning again.

6.7 Who has access to the user’s profile information?

The user’s profile information (profile name, description and avatar) is available to

contacts in the user’s contact list. However, since contact requests are processed

automatically, anyone who knows the user’s TorChat identifier can become his

contact and receive his profile information.

37

Even more, a full handshake is not needed as according to the protocol (see

Section 4.3), the user’s profile information will be disclosed automatically in

response to a peer’s ping message.

This should be prevented by asking for a confirmation before adding a contact to

the contact list and by sending profile information only after the peer has been

added to the contact list.

6.8 Who has access to the user’s presence-related

information?

It would be desirable that the user’s presence-related information be disclosed only

to contacts in the user’s contact list. As described in the previous section, TorChat

discloses profile information, including availability-related information to anyone

who initiates the handshake process.

However, even if TorChat disclosed availability only to the contacts in the contact

list, presence-related information is still available to every client in the Tor

network who is able to download a hidden service descriptor. The descriptor is

updated in the directory server once an hour or whenever its content changes [14,

Section 1.4].

By collecting presence-related information, the adversary can build an activity

graph and use it to correlate TorChat activity with other activities, thereby

discovering the real identity of the TorChat user.

There is no solution for that and the only recommendation is to make sure that

TorChat is online all the time.

It is interesting to note that someone who is in the user’s contact list can distinguish

between a network outage and a TorChat client restart, since the random number

used to authenticate the peer is not regenerated if the connection between peers

breaks up.

38

6.9 Who has access to information on the user’s

contacts?

Thanks to Tor and its hidden service design, the TorChat peers communicating

should be the only parties that know about the communication taking place and

for anyone else, it should be very difficult to find out who is communicating with

whom.

However, there exists a basic communication confirmation attack that can be

performed due to the way the TorChat protocol handles the received ping messages

that contain a TorChat identifier from a peer with whom the handshake process

has already been established.

As can be seen in the protocol description (see Section 4.3.2), if the ping

message is received with a peer identifier with whom the handshake process

has already been established, TorChat will ignore the ping message and send

not implemented double connection using the connection over which the ping

message was received. This can be used by an adversary to test if the victim has

established a handshake with some other TorChat peer.

The simple fix would seemingly be to just ignore the double ping message without

informing the sender about a double connection. However, the proper fix would

be to handle the double ping message in a way that would prevent the attacker

from distinguishing between a case where the double ping message is ignored and

a case where TorChat tries to establish a back-connection to the address specified

in the spoofed ping message.

6.10 Is the user protected against denial-of-service

attacks?

Since TorChat relies on the Tor hidden service design, any denial-of-service attack

against Tor hidden services is also applicable to TorChat. In order to make the

TorChat client unavailable one can use general attacks against the Tor hidden

services described in [9].

39

The subsections below focus on application-level denial-of-service attacks which

apply specifically to TorChat.

6.10.1 Memory exhaustion through network read

TorChat does not limit the length of any message and buffers bytes into the

memory until a command separator (newline character) is received. This can

be used trivially by the attacker to exhaust the available memory in the victim’s

system by sending an endless stream of data over the victim’s outgoing connection

(but not the incoming connection as the victim’s incoming connection expects to

receive a keepalive status message every 120 seconds). How fast the memory

in the victim’s system is exhausted depends on the memory capacity of the

victim’s system and the speed at which the victim can receive data over the Tor

network.

6.10.2 Memory exhaustion through a chat message

A more efficient but also a less invisible memory exhaustion attack can be

performed by sending a large chat message in the message command. For instance,

a 20 MB message command displayed in the chat window will cause TorChat to

consume around 1 GB of memory.

6.10.3 Attacking via the profile name message

As described above, TorChat does not enforce a size limit to the messages received.

This allows an attacker to send an arbitrarily large profile name. A large profile

name will cause the TorChat GUI to hang while GTK tries to update the contact

list window. This will also prevent the victim from removing the attacker from

the contact list since the profile name is shown in the “Confirm deletion” window,

which will not be created by GTK if wider or taller than 32767 pixels. The victim

can remove the attacker’s contact by first changing the attacker’s profile name in

the “Edit contact” menu.

40

TorChat also fails to validate the profile name before writing it into the contact

list (buddy-list.txt). The file stores every contact on a separate line. The line

starts with the contact’s TorChat identifier (onion address) and continues with the

contact’s profile name separated from the TorChat identifier with a space.

The lack of validation allows adding arbitrary lines into the contact list by sending

out a profile name that contains escaped newline characters.

The contact list is saved right after the profile name message is received; however,

injected lines will be read only after TorChat is restarted. The injected lines will

be lost if a contact is added to or removed from the contact list before TorChat is

restarted.

An attacker can exploit this to cause an effective DoS attack by adding thousands of

contacts into the contact list. On start-up TorChat will try to create and establish

a connection with all the contacts in the contact list, which will cause extensive Tor

activity and will prevent the TorChat GUI from starting. The only way how the

victim can use TorChat again is to manually clean up the buddy-list.txt.

6.10.4 Attacking via multiple add me messages

As stated before, TorChat does not ask for the user’s consent before processing

a peer’s add me request. The attacker can exploit this by flooding the user with

dummy contacts and messages.

There has been a discussion about adding a block list feature to TorChat [24].

However, no solution has been implemented. The blacklist approach might not be

effective since the attacker can introduce a new TorChat identity at an insignificant

cost. A more appropriate solution would be the whitelist approach were the user

is asked for confirmation before a contact is added to his contact list.

6.10.5 Attacking via multiple filename messages

Peers in the user’s contact list can send files which will be automatically accepted

by TorChat and downloaded in a separate window (see Section 3.1).

41

An attacker can initiate several file transfers by sending multiple filename

messages. This will fill up the victim’s screen with file transfer windows and

cause the memory in the victim’s system to be exhausted very quickly, resulting

in a very efficient denial-of-service attack (see Figure 11).

Figure 11: Denial-of-service attack with multiple file transfer windows.

The impact of the attack could be significantly reduced if file transfers were shown

in a single file transfer window and if arbitrary contacts were not added to the

contact list without the user’s consent.

6.11 Which forensic evidence does the software leave on

the user’s device?

All user-specific TorChat-related files are stored in the ~/.torchat/

directory. This includes buddy-list.txt that contains the user’s contacts,

torchat.ini that contains TorChat configuration parameters including the

user’s profile name and profile text, avatar.png (if set by the user),

logged conversations in <TorChat identifier>.log files (logging is not

enabled by default), an offline message queue in files that are in the form

<TorChat identifier> offline.txt, and temporary files received from other

peers in the form torchat incoming <unique identifier>.

42

The ~/.torchat/Tor/ directory stores the Tor hidden service long-term private

key in the hidden service/private key file, the Tor configuration in the

torrc.txt file and the Tor cache in the tor data/ directory.

TorChat uses secure erasing (wiping) in several situations. Any temporary files

received are wiped as soon as the user saves the file or cancels the download. Offline

message queue files are wiped as soon as messages are delivered or the contact is

removed from the contact list.

6.12 Is the software available from a trusted source and

can its integrity be verified?

It is important to obtain the TorChat application from a trusted source to be

sure about its integrity. The original source for TorChat is available on TorChat’s

project page in GitHub [5]. Since GitHub is available over a secure connection

and the history of all versions is preserved in GitHub, it is safe to assume that

TorChat obtained from GitHub has not been modified by an adversary.

GitHub’s download section [25] contains prebuilt packages of TorChat releases

available for MS Windows and Debian Linux distribution.

6.12.1 Linux

TorChat is also available in several Linux distribution package repositories:

• Debian Linux stable version 8 has the latest version of TorChat 0.9.9.553 [26].

• Ubuntu Linux version 14.04 [27] and the latest version 15.04 [28] both have

TorChat version 0.9.9.553.

• Arch Linux has TorChat 0.9.9.553 available in their Arch User Repository

(AUR) [29].

Both Debian and Ubuntu apply minor patches to the versions they provide through

package repository: the Spanish translation of TorChat, a change in the way how

the SOCKS proxy Python module is found in the system and an upgrade to the

43

wxWidgets Python library version from 2.8 to 3.0. Only Ubuntu 14.04 is missing

the patch needed to upgrade the wxWidgets Python module. Arch Linux does not

apply any patches and provides an unmodified version of TorChat.

6.12.2 Windows

For MS Windows users, the TorChat page in GitHub provides an executable

file that contains everything needed to run TorChat out-of-box, including the

Tor client. The Windows executable file has allegedly [30] been compiled using

PyInstaller [31].

However, the latest Windows executable file ships with an outdated version of the

Tor client, 0.2.2.39 [32]. This Tor version has several vulnerabilities including

heartbleed, which allows a malicious Tor guard node [33] to compromise the

TorChat long-term private key. Fortunately, this version of Tor is too outdated to

even connect to the Tor network [34].

44

7 Summary of Findings

Below is a list of security issues found, ranked by significance.

1. TorChat processes contact requests and updates the contact list without

asking the user’s consent. This allows an attacker to harvest profile

(Section 6.7) and availability (Section 6.8) information, allows executing

contact confusion and impersonation attacks at the GUI level (Section 6.3.3)

and makes denial-of-service attacks (Section 6.10.2, 6.10.3, 6.10.4, 6.10.5)

easier to execute.

2. Due to the way in which the TorChat handshake process is implemented, it

is possible for an attacker to determine if two TorChat clients who are online

have established a TorChat handshake, thus allowing the attacker to execute

a communication confirmation attack (Section 6.9).

3. TorChat does not enforce a length limit on received protocol messages and

their parts. This allows an attacker to execute efficient denial-of-service

attacks against the TorChat client (Section 6.10.1, 6.10.2, 6.10.3).

4. TorChat fails to validate the contents of received profile name messages

before writing them into the contact file. An attacker can exploit this to

add arbitrary contacts to the victim’s contact list and execute a permanent

denial-of-service attack, resulting in the victim’s TorChat client failing to

start (Section 6.10.3).

5. TorChat uses a cryptographically insecure pseudo-random number generator

to generate random numbers used in the TorChat handshake process. This

may allow an attacker to impersonate an incoming connection from a victim’s

contact. Thus, the attacker would be able to send messages on behalf of that

contact and receive file transfers designated for that contact (Section 6.3.2).

6. TorChat runs Tor with non-default parameters which, compared to other

Tor users, makes TorChat users easier to deanonymize with a malicious Tor

guard node (Section 6.6.1).

7. TorChat makes links automatically clickable without warning the user about

possible deanonymization attacks (Section 6.6.2).

45

8 Conclusions

The objectives set in the introduction were achieved. The TorChat protocol has

been documented, reference implementation has been audited, and as a result of

security analysis, several security considerations were revealed that need to be

considered when using TorChat.

The designer of TorChat has made several smart design choices by exploiting the

self-authenticating nature of Tor hidden services to provide authentication between

TorChat peers and by leaving the encryption and anonymity part to be handled

by the well-tested and widely used Tor software.

However, several flaws were found in the implementation of TorChat that make

TorChat users vulnerable to denial-of-service attacks and prevent TorChat from

achieving the privacy guarantees it could theoretically provide.

Despite the flaws found, the use of TorChat might still be secure in a scenario

where the peer’s onion address does not became known to an adversary interested

in attacking the person behind the TorChat address.

Fortunately, the fixes for the vulnerabilities found can be implemented in the code

relatively easily and without needing to change the design of TorChat.

46

References

[1] Ryan Gallagher. Timeline: How the World Was Misled About Government

Skype Eavesdropping. July 2013. http://www.slate.com/blogs/future_

tense/2013/07/12/skype_surveillance_a_timeline_of_public_

claims_and_private_government_dealings.html.

[2] James Risen and Nick Wingfield. Web’s Reach Binds N.S.A. and Silicon Valley

Leaders. June 2013. http://www.nytimes.com/2013/06/20/technology/

silicon-valley-and-spy-agency-bound-by-strengthening-web.html.

[3] Glenn Greenwald, Ewen MacAskill, Laura Poitras, Spencer Ackerman,

and Dominic Rushe. Microsoft handed the NSA access to encrypted

messages. July 2013. http://www.theguardian.com/world/2013/jul/11/

microsoft-nsa-collaboration-user-data.

[4] Privacy International. What is metadata? https://www.

privacyinternational.org/?q=node/53 (last visited 16.05.2015).

[5] Bernd Kreuss. TorChat, January 2014. https://github.com/prof7bit/

TorChat.

[6] The Tor Project, Inc. Tor: Overview. https://www.torproject.org/about/

overview.html.en (last visited 16.05.2015).

[7] Bernd Kreuss. Interview with Bernd Kreuss of TorChat, October

2013. http://www.reddit.com/r/onions/comments/1l9k8m/interview_

with_bernd_kreuss_of_torchat/ccnmivi.

[8] Joe Mullin. Silk Road trial: FBI reveals what’s on Ross Ulbrichts computer,

January 2015. http://arstechnica.com/tech-policy/2015/01/silk-

road-trial-fbi-reveals-whats-on-ross-ulbrichts-computer/.

[9] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Trawling for

Tor Hidden Services: Detection, Measurement, Deanonymization. In IEEE

Symposium on Security and Privacy’13, pages 80–94, 2013.

47

http://www.slate.com/blogs/future_tense/2013/07/12/skype_surveillance_a_timeline_of_public_claims_and_private_government_dealings.html
http://www.slate.com/blogs/future_tense/2013/07/12/skype_surveillance_a_timeline_of_public_claims_and_private_government_dealings.html
http://www.slate.com/blogs/future_tense/2013/07/12/skype_surveillance_a_timeline_of_public_claims_and_private_government_dealings.html
http://www.nytimes.com/2013/06/20/technology/silicon-valley-and-spy-agency-bound-by-strengthening-web.html
http://www.nytimes.com/2013/06/20/technology/silicon-valley-and-spy-agency-bound-by-strengthening-web.html
http://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
http://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://www.privacyinternational.org/?q=node/53
https://www.privacyinternational.org/?q=node/53
https://github.com/prof7bit/TorChat
https://github.com/prof7bit/TorChat
https://www.torproject.org/about/overview.html.en
https://www.torproject.org/about/overview.html.en
http://www.reddit.com/r/onions/comments/1l9k8m/interview_with_bernd_kreuss_of_torchat/ccnmivi
http://www.reddit.com/r/onions/comments/1l9k8m/interview_with_bernd_kreuss_of_torchat/ccnmivi
http://arstechnica.com/tech-policy/2015/01/silk-road-trial-fbi-reveals-whats-on-ross-ulbrichts-computer/
http://arstechnica.com/tech-policy/2015/01/silk-road-trial-fbi-reveals-whats-on-ross-ulbrichts-computer/

[10] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. Content and

popularity analysis of Tor hidden services. CoRR, abs/1308.6768, 2013.

[11] Bernd Kreuss. Torchat2 readme. https://github.com/prof7bit/TorChat/

blob/torchat2/README.markdown.

[12] jTorchat, October 2014. https://github.com/jtorchat/jtorchat.

[13] torchat - the Ruby implementation, August 2012. https://github.com/meh/

ruby-torchat.

[14] The Tor Project, Inc. Tor Rendezvous Specification, November 23,

2015. https://gitweb.torproject.org/torspec.git/tree/rend-spec.

txt?id=58325d15cd2dba9672fbc94bc56e08856d945796.

[15] Roger Dingledine and Nick Mathewson. Tor Protocol Specification, August

12, 2015. https://gitweb.torproject.org/torspec.git/tree/tor-spec.

txt?id=5a79d67a45454ab5b7413478702acb93dfa867e2.

[16] Wikipedia. Zooko’s triangle. http://en.wikipedia.org/wiki/Zooko%27s_

triangle (last visited 16.05.2015).

[17] Howto: Run more than one instance of TorChat, May 2008.

https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/

doc/howto_second_instance.html.

[18] Electronic Frontier Foundation. Secure Massaging Scorecard, January 2015.

https://www.eff.org/secure-messaging-scorecard.

[19] Elaine Barker and Allen Roginsky. Transitions: Recommendation for

Transitioning the Use of Cryptographic Algorithms and Key Lengths. January

2011. http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-

131A.pdf.

[20] Roger Dingledine. Two relays serving same hidden service. April 2011. http:

//archives.seul.org/tor/relays/Apr-2011/msg00022.html.

[21] Python documentation: 9.6. random — Generate pseudo-random numbers.

https://docs.python.org/2/library/random.html.

48

https://github.com/prof7bit/TorChat/blob/torchat2/README.markdown
https://github.com/prof7bit/TorChat/blob/torchat2/README.markdown
https://github.com/jtorchat/jtorchat
https://github.com/meh/ruby-torchat
https://github.com/meh/ruby-torchat
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt?id=58325d15cd2dba9672fbc94bc56e08856d945796
https://gitweb.torproject.org/torspec.git/tree/rend-spec.txt?id=58325d15cd2dba9672fbc94bc56e08856d945796
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt?id=5a79d67a45454ab5b7413478702acb93dfa867e2
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt?id=5a79d67a45454ab5b7413478702acb93dfa867e2
http://en.wikipedia.org/wiki/Zooko%27s_triangle
http://en.wikipedia.org/wiki/Zooko%27s_triangle
https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/doc/howto_second_instance.html
https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/doc/howto_second_instance.html
https://www.eff.org/secure-messaging-scorecard
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
http://archives.seul.org/tor/relays/Apr-2011/msg00022.html
http://archives.seul.org/tor/relays/Apr-2011/msg00022.html
https://docs.python.org/2/library/random.html

[22] Shallot, July 2012. https://github.com/katmagic/Shallot.

[23] The Tor Project, Inc. Tor directory protocol, version 3, October 22,

2015. https://gitweb.torproject.org/torspec.git/tree/dir-spec.

txt?id=35c87554c30bbaaf9641b56bdf4e61a1e636a70b.

[24] Bernd Kreuss. Issue 13: Implement a block list, 2008. https://code.google.

com/p/torchat/issues/detail?id=13.

[25] Bernd Kreuss. TorChat Download page in Github, September 2012. https:

//github.com/prof7bit/TorChat/downloads.

[26] Debin Linux - Package: torchat (0.9.9.553-1.1). https://packages.debian.

org/jessie/torchat.

[27] Ubuntu Linux 14.04 Trusty - Package: torchat (0.9.9.553-1). http://

packages.ubuntu.com/trusty/web/torchat.

[28] Ubuntu Linux 15.04 Vivid - Package: torchat (0.9.9.553-1.1). http://

packages.ubuntu.com/vivid/web/torchat.

[29] Arch Linux - Package Details: torchat 0.9.9.553-2. https://aur.archlinux.

org/packages/torchat/.

[30] Bernd Kreuss. TorChat SVN commit r292, December 2010. https://code.

google.com/p/torchat/source/detail?r=292.

[31] PyInstaller, March 2015. https://github.com/pyinstaller/pyinstaller/

wiki.

[32] Bernd Kreuss. TorChat change log, September 2012. https://github.com/

prof7bit/TorChat/blob/torchat_py/torchat/src/changelog.txt.

[33] Roger Dingledine. OpenSSL bug CVE-2014-0160, April 2014. https://blog.

torproject.org/blog/openssl-bug-cve-2014-0160.

[34] Tor Binary Too Outdated Again #62 , October 2014. https://github.com/

prof7bit/TorChat/issues/62.

49

https://github.com/katmagic/Shallot
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt?id=35c87554c30bbaaf9641b56bdf4e61a1e636a70b
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt?id=35c87554c30bbaaf9641b56bdf4e61a1e636a70b
https://code.google.com/p/torchat/issues/detail?id=13
https://code.google.com/p/torchat/issues/detail?id=13
https://github.com/prof7bit/TorChat/downloads
https://github.com/prof7bit/TorChat/downloads
https://packages.debian.org/jessie/torchat
https://packages.debian.org/jessie/torchat
http://packages.ubuntu.com/trusty/web/torchat
http://packages.ubuntu.com/trusty/web/torchat
http://packages.ubuntu.com/vivid/web/torchat
http://packages.ubuntu.com/vivid/web/torchat
https://aur.archlinux.org/packages/torchat/
https://aur.archlinux.org/packages/torchat/
https://code.google.com/p/torchat/source/detail?r=292
https://code.google.com/p/torchat/source/detail?r=292
https://github.com/pyinstaller/pyinstaller/wiki
https://github.com/pyinstaller/pyinstaller/wiki
https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/src/changelog.txt
https://github.com/prof7bit/TorChat/blob/torchat_py/torchat/src/changelog.txt
https://blog.torproject.org/blog/openssl-bug-cve-2014-0160
https://blog.torproject.org/blog/openssl-bug-cve-2014-0160
https://github.com/prof7bit/TorChat/issues/62
https://github.com/prof7bit/TorChat/issues/62

	Introduction
	Tor and Hidden Services
	Hidden Services
	Hidden service address

	TorChat
	Managing Contacts and Conversations
	Configuration Options

	TorChat Protocol
	Handshake
	File Transfers
	Protocol Messages
	not_implemented
	ping
	pong
	client
	version
	status
	profile_name
	profile_text
	profile_avatar_alpha
	profile_avatar
	add_me
	remove_me
	message
	filename
	filedata
	filedata_ok
	filedata_error
	file_stop_sending
	file_stop_receiving

	Analysis Methodology
	Is the communication protected in transit?
	Is the communication protected against abuse from the provider?
	Can someone impersonate the user?
	Are past communications secure if the user's keys are stolen?
	Is the source code available, crypto design well-documented, open to independent review?
	Can the service be used anonymously?
	Who has access to the user's profile information?
	Who has access to the user's presence-related information?
	Who has access to information on the user's contacts?
	Is the user protected against denial-of-service attacks?
	Which forensic evidence does the software leave on the user's device?
	Is the software available from a trusted source and can its integrity be verified?

	Security Analysis
	Is the communication protected in transit?
	Is the communication protected against abuse from the provider?
	Can someone impersonate the user?
	Impersonating the Tor hidden service
	Spoofing the pong message
	Impersonation at the GUI level

	Are past communications secure if the user's keys are stolen?
	Is the source code available, crypto design well-documented, open to independent review?
	Can the service be used anonymously?
	Deanonymization by a malicious guard node
	Deanonymization by message contents

	Who has access to the user's profile information?
	Who has access to the user's presence-related information?
	Who has access to information on the user's contacts?
	Is the user protected against denial-of-service attacks?
	Memory exhaustion through network read
	Memory exhaustion through a chat message
	Attacking via the profile_name message
	Attacking via multiple add_me messages
	Attacking via multiple filename messages

	Which forensic evidence does the software leave on the user's device?
	Is the software available from a trusted source and can its integrity be verified?
	Linux
	Windows

	Summary of Findings
	Conclusions

