
Optimization of the ROCA (CVE-2017-15361)
Attack

Bruno Produit
Supervisor: Arnis Paršovs, MSc

Institute of Computer Science
University of Tartu

June 2, 2019



Table of contents

1 Context

2 The ROCA Attack
Facts about the ROCA attack
Transfer entropy from a to k

3 Optimization
Entropy of a and k
Impact of the Optimizations

4 Efficiency

5 Implementation

Optimization of the ROCA attack 2 / 11



Context

2017 Czech researchers find flaw in Infineon’s key generation
algorithm1

750 000 Estonian ID-cards affected
140.8 CPU-years to factor an Estonian ID card (worst case)
New result: 70.4 CPU-years to factor an Estonian ID card (worst
case)
New result: For 90 % of keys, average case is 4x better than
ROCA paper

1https://crocs.fi.muni.cz/public/papers/rsa_ccs17
Optimization of the ROCA attack Context 3 / 11

https://crocs.fi.muni.cz/public/papers/rsa_ccs17


Facts about the ROCA attack

Factorization of RSA keys
Takes advantage of the polynomial form of primes
Prime number construction: p = k ∗ M + (65537a mod M)

Vulnerable variant of Joye and Paillier’s secure prime generation
algorithm2

Key format:

N =

p︷ ︸︸ ︷
(k ∗ M + (65537a mod M)) ∗

q︷ ︸︸ ︷
(l ∗ M + (65537b mod M))

Fingerprintable: N ≡ 65537a+b mod M ≡ 65537c mod M

2http://joye.site88.net/papers/JPV00gen.pdf
Optimization of the ROCA attack The ROCA Attack 4 / 11

http://joye.site88.net/papers/JPV00gen.pdf


Transfer entropy from a to k

Figure: Prime form transformation3

3https://crocs.fi.muni.cz/_media/public/papers/nemec_roca_csaw_poster.pdf
Optimization of the ROCA attack The ROCA Attack 5 / 11

https://crocs.fi.muni.cz/_media/public/papers/nemec_roca_csaw_poster.pdf


Overview of the ROCA attack

ROCA

a′0 ... a′n1

2

3

4

5

6

f(x) = x + M′ + (65537a′ mod M′)

k′ = Howgrave − Graham(f(x))

p = k′ + M′ + (65537a′ mod M′)

N (mod p) == 0

return p, (q = N//p)

Loop over all possible a′

Construct polynomial with this itera-
tion’s a′

Calculate roots of polynomial with
Howgrave-Graham method

Construct prime with given a′ and
calculated k′

Test if constructed p is a factor of N

Return factors

False

True

Figure: Overview of the ROCA attack

Optimization of the ROCA attack The ROCA Attack 6 / 11



Entropy of a and k

Figure: Entropy of each bit in a′ and k′, MSB to LSB (2048-bit keys)

Optimization of the ROCA attack Optimization 7 / 11



Impact of the Optimizations

c′
2 ca c′+ord′

2

ord′

2

ord′

4

Figure: Comparison of the original and the new bruteforce range

p =

k′︷ ︸︸ ︷
(ck + r) ∗M′ + (65537a′mod M′) (1)

Optimization of the ROCA attack Optimization 8 / 11



Efficiency

Key size Non-optimized Optimized Optimized Optimized
Random key Cherry-picked

512-bit 2.0333 CPU-hours* 2.2 CPU-hours 0.73 CPU-hours* 0.51 CPU-hours*
1024-bit 102.4 CPU-days 51.2 CPU-days 36.5 CPU-days 25.6 CPU-days
2048-bit 161.2 CPU-years 80.6 CPU-years 57.5 CPU-years 40.3 CPU-years (336$)

Table: Efficiency of the ROCA attack using HPC

Optimization of the ROCA attack Efficiency 9 / 11



Implementation
https://blog.cr.yp.to/20171105-infineon3.txt

Attack with known a
Not using M′ transformation (not needed when known a)

https://github.com/brunoproduit/roca
First publicly available full attack
Based on SageMath

Optimization of the ROCA attack Implementation 10 / 11

https://blog.cr.yp.to/20171105-infineon3.txt
https://github.com/brunoproduit/roca


Parrallelization

Figure: Splitting range for process allocation with given CPU cores available

Optimization of the ROCA attack Implementation 11 / 11


