
EMV (Chip-and-PIN) Protocol

Märt Bakhoff

December 15, 2014

Abstract

The objective of this report is to observe and describe
a real world online transaction made between a debit
card issued by an Estonian bank and a payment
terminal issued by a Estonian bank. In this process
we can learn how the EMV protocol works and which
protocol features are used in a Chip-and-PIN card
issued by an Estonian bank.

1 Introduction

The world is slowly but surely moving from cash
to using digital banking and card payments. An
important part in it is the extra security promised by
the chip-and-pin cards. Unfortunately the security
of the chip-and-pin protocol (EMV) is difficult to
analyse because it requires specialized hardware
which is running closed source software.

This report describes an attempt by the author
of this paper to verify whether estonian bank cards
correctly implement the EMV protocol and gain a
better understanding of the protocol by investigating
the data moving between a chip-and-pin card and a
payment terminal.

“EMV stands for Europay, MasterCard
and Visa, a global standard for
interoperation of integrated circuit cards
(ICC) and ICC capable point of sale
terminals and ATMs, for authenticating
credit and debit card transactions.” -
Wikipedia [1].

Simply put, the EMV standard defines how every
compatible card and terminal communicate, from

electrical protocol up to the high level crypto
operations. It’s detailed enough to be useful in
decoding a captured transaction, which is exactly
what is needed here.

The specification is divided into four “books”
by the general topics covered in it. The entire
specification [2] is available to anyone free of charge
at http://emvco.com.

The Smartcard and the terminal communicate
using a simple request-response protocol. The
requests packets (sent by the terminal) and response
packets (sent by the card) are called APDUs
(application protocol data units). Each request starts
with a instruction code, followed by two parameters
and an optional data field (table 1). Each response
contains a optional data field followed by a two byte
status code (table 2). Status 9000h is the usual ”OK”
response, 6xxxh means either an error or request for
additional processing.

Code Description Length
CLA Class of instruction 1
INS Instruction code 1
P1 Parameter 1 1
P2 Parameter 2 1
Lc Length of command data 0 or 1
Data Command data var.
Le Expected length of

response
0 or 1

Table 1: Request APDU

1

http://emvco.com


Code Description Length
Data Response data var
SW1 Command status 1
SW2 Command qualifier 1

Table 2: Response APDU

2 Capturing The Transaction

To find out what bits and bytes are exchanged
between the card and the terminal, the physical
communication line between the card and the
terminal was tapped. Alternatively, it would have
been possible to modify one of the end-points to log
commands sent and received. However, there are no
commonly available ready-to-use hardware solution
to achieve this.

Since a debit card is just a smartcard, it was
decided to use the Simtrace development board [3]
(see Figure 1) to physically sniff the communication
line.

2.1 Simtrace

Simtrace is a standalone electronic device that can be
placed between a smartcard and a smartcard reader
where it acts as a proxy and forwards data between
the card and the reader. It also has a USB port
that can be used to view and save all the data going
through Simtrace.

Simtrace can be ordered online for 90 EUR and
it includes wires that can be used to connect the
Simtrace board to a card reader. Simtrace was
originally designed for sniffing mobile phone and SIM
card communications but since SIM cards are just
regular smartcards then it can also be used for sniffing
bank cards.

Unfortunately, Simtrace only has a mini-SIM card
slot which cannot be used to plug-in a full-size
smartcard, therefore, a solution had to be found
for connecting a debit card to Simtrace without
damaging the card. To achieve this a standard ID
card reader was modified by adding a smart card
contact interface which could be connected to the
wires included in the Simtrace package (Figure 2).

After Simtrace was customized and the software
which sends captured data to the computer was
installed and configured, the sniffing of real world
transaction could begin.

2.2 Captured Transaction

The transaction analyzed in this report was captured
using a terminal from a friendly merchant in Tartu
and using a Visa Electron debit card issued by SEB
Estonia. The amount of transaction was 0.99 EUR.
The transaction was performed in September, 2014.
The full output (all requests and responses) with
annotation can be found from the appendix.

The final setup for the capture can be seen in
Figure 3. During the transaction, the computer
connected to the Simtrace board produced a stream
of APDU requests and responses (Figure 4).

Figure 1: Simtrace development board1

2.3 Discrepancies in the data

While the capture of the transaction using Simtrace
worked, it wasn’t perfect. There were several
discrepancies in the captured binary dump all of
which are described below. Fortunately, these
discrepancies are insignificant and do not prevent us
from analysing the transaction. The suspected cause
for these discrepancies is software bug in Simtrace

1Source http://bb.osmocom.org/trac/attachment/wiki/

SIMtrace/Hardware/simtrace_v13_front.jpg

2

http://bb.osmocom.org/trac/attachment/wiki/SIMtrace/Hardware/simtrace_v13_front.jpg
http://bb.osmocom.org/trac/attachment/wiki/SIMtrace/Hardware/simtrace_v13_front.jpg


Figure 2: Modified ID card reader

Figure 3: Recording the transaction

Figure 4: Sniffed APDUs

which fails to capture all data if smart card is
communicating too fast [4].

Trailing bytes in request. All request APDUs
have two unexpected bytes at the end. This is not
specified in EMV and is probably caused by issues
with Simtrace. The bytes are usually in the form
6xxxh and the last byte often matches the length of
the response. This means that the extra bytes could
instead be from the card.

Unexpected header in responses. All response
APDUs have five unexpected bytes in the beginning
of the packet. This is not specified by EMV and is
also probably caused by issues with Simtrace. The
first 2 bytes usually match the instruction sent in the
request APDU and the fifth byte usually equals the
length of the entire response APDU.

Missing packets. There are three packets missing
in the captured binary log. The missing packets are
not random, but are probably once again related to
Simtrace.

Missing request4 follows a response packet with an
unusual status code from the card that has special
instructions to the terminal.

3



Missing response16 and response18 should be
responses with an empty body that contain only the
status code. Oddly the status code 9000h is visible in
the end of the preceding request, which again hints
that these bytes may be from the card.

3 Analysis of Captured Data

This section goes through captured transaction
describing exchanged data and its place in EMV
protocol. High level overview is given here with
references to the low-level details and captured bytes
in the Appendix.

3.1 Application selection

Before starting the payment, the terminal must find
and select the payment application on the chip-card.
There can actually be several applications on a single
card (for example, LHV bank’s cards have both debit
and credit applications on the same chip) [5]. As
the first step, the terminal reads all the application
identifiers from the card and presents a selection to
the terminal user. An example for terminal and card
supporting multiple applications is given in Figure 5.

Figure 5: Card application selection2

After card application has been selected, all the
following operations until the end of the process are
executed in the context of the selected application.
The Chip-and-PIN card used in our captured
transaction has only single debit card application
which is used automatically (requests 1-3).

3.2 Read application data

After selecting the application the terminal proceeds
to reading all the data for that application from
the card. This includes expiration dates, PIN code
options, card authentication options and several
crypto keys. All the data is read up front so that later
operations won’t need to read additional information.
This corresponds to requests 4-12.

3.3 Data authentication

After reading all the data in the application, the
terminal will verify that the card is authentic
and hasn’t been tampered with. There are two
mechanisms for that (one or both can be used) [6].

In the static data authentication (SDA) mode, the
terminal will create a hash of all the important data
on the card. It will then read a digital signature from
the card that contains the hash for the same data
signed by the card’s issuer. If the signature is valid,
then the data on the card has not been tampered
with.

In the dynamic data authentication (DDA) mode,
the terminal will generate a unique random number
(nonce) and send it to the card. The card will
then use its private key to digitally sign the nonce
and sends the signature back to the terminal. The
terminal can then check the signature using the
card’s public key to make sure that the card actually
contains the right private key.

DDA is much more secure because it’s very difficult
to extract a private key from a smartcard and it
would be impossible to pass this check without the
real key. It is also secure agains replay attacks
(capture a valid DDA response and use it in another

2Source http://useinability.files.wordpress.com/

2014/01/card_terminal_ikea.jpg

4

http://useinability.files.wordpress.com/2014/01/card_terminal_ikea.jpg
http://useinability.files.wordpress.com/2014/01/card_terminal_ikea.jpg


transaction) because the terminal always uses a new
nonce.

In case of our transaction the DDA mode is used
(see request 13).

3.4 Cardholder verification

Usually a PIN code is used to verify the presence of
card’s owner. The card will generate a nonce and
send it to the terminal. The user must enter the
PIN on the pinpad. The pinpad encrypts the PIN
code and the nonce using the card’s public key and
the encrypted PIN is sent to the card. The card can
then verify the PIN.

The encryption protects against snooping the PIN
codes and the nonce protects against replay attacks
(capturing a response for a valid pin entry and using
it in another transaction). The process can be seen
in requests 14-16.

3.5 Risk and restrictions processing

The terminal will check that the card has not
expired and that the card is allowed to be used for
the transaction. The card contains a list of flags
that restrict it’s use, for example: domestic use,
international use, use in ATMs.

Additionally the terminal must decide whether to
use online mode for the transaction (the card can
communicate with the issuing bank over the internet)
or the transaction will be done fully offline. This
decision is based on the terminal’s configuration and
the amount of money that is being processed.

The online/offline decision must also be confirmed
by the card. If the terminal requests an online
payment, then the card can either accept or reject it.
If the terminal requests an offline payment, then the
card can reject it but request the terminal to switch
to online payment. The card can’t request an offline
payment if the terminal requires an online payment.

3.6 Online processing

The online verification mostly relies on HMAC.
HMAC (hash-based message authentication code) is
a hash of some data that is mixed with a secret key.

As a result, the hash can only be verified and/or
created by a party who knows the secret key.

Before confirming the transaction the card will
usually verify the payment with the issuing bank. All
the data for the payment is sent to the card by the
terminal. The card will then create a HMAC of the
data and return it to the terminal. The terminal
will send the payment data along with the HMAC
from the card to the bank to verify (the secret key
of the HMAC is known only by the bank and the
card). The bank’s response in forwarded to the
card. This request to the bank is called an ARQC
(Authorisation Request Cryptogram). This is visible
in captured requests 17-18.

If the connection to the bank fails then the card
and the terminal may negotiate an offline payment
instead. If the bank rejects the payment then the
entire transaction is aborted.

3.7 Final processing

If all the previous steps have succeeded then the
terminal will try to authorize the payment. It will
send all the necessary data to the card and the card
will generate another HMAC that will be used by the
merchant to get money from the payment processor
(VISA, Mastercard etc). This is the last chance for
the card to reject the transaction. The final HMAC
that authorizes the payment is called a transaction
certificate (TC) (request 19).

4 Conclusion

The author successfully captured a conversation
between the card and the terminal. The EMV
specification makes it easy to read the captured
data and find out what information is sent to the
card. The tested SEB card seemed to follow the
specification correctly and contained reasonable data.

References

[1] EMV, 2014. http://en.wikipedia.org/wiki/

EMV.

5

http://en.wikipedia.org/wiki/EMV
http://en.wikipedia.org/wiki/EMV


[2] LLC EMVCo. EMV 4.3 specification, 2011.
http://www.emvco.com/specifications.aspx.

[3] Osmocom. Osmocom SIMtrace, 2014. http://

bb.osmocom.org/trac/wiki/SIMtrace.

[4] Min Xu. Re: Fast SIM cards loosing bytes,
March 2014. http://permalink.gmane.org/

gmane.comp.mobile.osmocom.simtrace/126.

[5] Level2Kernel. How EMV (Chip & PIN) Works
- Transaction Flow Chart, 2011. https://www.

level2kernel.com/flow-chart.html.

[6] Cotignac Consultancy. EMV Offline Data
Authentication, 2008. http://cotignac.co.nz/
emv-offline-data-authentication/.

[7] javaemvreader project. Collection of CA
public keys, revision 20, 2014. https:

//code.google.com/p/javaemvreader/

source/browse/trunk/src/main/resources/

certificationauthorities.xml.

6

http://www.emvco.com/specifications.aspx
http://bb.osmocom.org/trac/wiki/SIMtrace
http://bb.osmocom.org/trac/wiki/SIMtrace
http://permalink.gmane.org/gmane.comp.mobile.osmocom.simtrace/126
http://permalink.gmane.org/gmane.comp.mobile.osmocom.simtrace/126
https://www.level2kernel.com/flow-chart.html
https://www.level2kernel.com/flow-chart.html
http://cotignac.co.nz/emv-offline-data-authentication/
http://cotignac.co.nz/emv-offline-data-authentication/
https://code.google.com/p/javaemvreader/source/browse/trunk/src/main/resources/certificationauthorities.xml
https://code.google.com/p/javaemvreader/source/browse/trunk/src/main/resources/certificationauthorities.xml
https://code.google.com/p/javaemvreader/source/browse/trunk/src/main/resources/certificationauthorities.xml
https://code.google.com/p/javaemvreader/source/browse/trunk/src/main/resources/certificationauthorities.xml


Appendix: Captured APDUs with Annotations

This appendix contains the entire captured conversation between the card and the terminal. The messages
were decoded by hand using the EMV specification. On the left side are the raw bytes and on the right side
is the description of these bytes.

Most of the data is BER encoded which means the data is split into type-length-value triplets. Some of
the data is just a concatenation of pieces of data, such as DDOL and CDOL fields.

The description sometimes contains notes such as ”B1 x.y.z”. This is a reference to the EMV specification,
noting the book number and the exact chapter.

4.1 Request 1 (Application selection)

00 a4 04 00 B1 11.3.2 SELECT
mode: by filename
options: select first/next

0e filename length: 14
31 50 41 59 2e 53 59 53 2e 44 44

46 30 31

filename: ’1PAY.SYS.DDF01’

61 22 ???

4.2 Response 1

00 c0 00 00 22 ???
6f 20 FCI template (PSE selected)
84 0e 31 50 41 59 2e 53 59 53 2e

44 44 46 30 31

directory file name: ’1PAY.SYS.DDF01’

a5 0e FCI proprietary template
88 01 01 ShortFileIdentifier of directory element: 1
5f 2d 08 65 74 65 6e 72 75 64 65 language preference: et,en,ru,de
90 00 ok

4.3 Request 2

00 b2 01 0c B1 11.2.2 READ RECORD
P1: record number: 1
ShortFileIdentifier: 1; P1 is record number

00 data length: 0
6c 22 ???

7



4.4 Response 2

00 b2 01 0c 22 ???
70 20 tag+len
61 1e directory entry tag + len
4f 07 a0 00 00 00 03 20 10 Application Identifier: VISA electron
50 10 56 49 53 41 45 4c 45 43 54

52 4f 4e 20 20 20 20

application label: ’VISAELECTRON ’

87 01 01 application priority: 1
90 00 ok

4.5 Request 3

00 b2 02 0c B1 11.2.2 READ RECORD
P1: record number: 2
ShortFileIdentifier: 1; P1 is record number

00 data length: 0
6a 83 ???

4.6 Response 3

00 a4 04 00 07 ???
a0 00 00 00 03 20 10 Application ID of visa electron
61 35 read 53 more bytes by GET RESPONSE

4.6.1 command mismatch?

0x00a40400 in the beginning of the response corresponds to Book1 11.3.2 SELECT command (select by
name) which is not the same as in the request

4.7 Request 4 (Reading application data)

MISSING

4.8 Response 4

00 c0 00 00 35 ???
6f 33 template 6f, length 51 bytes
84 07 a0 00 00 00 03 20 10 file name: AID of visa electron
a5 28 File Control Information (FCI) Proprietary Template, length 40
50 10 56 49 53 41 45 4c 45 43 54

52 4f 4e 20 20 20 20

application label ’VISAELECTRON ’

87 01 01 application priority: 1
5f 2d 08 65 74 65 6e 72 75 64 65 language preference: et,en,ru,de
bf 0c 05 9f 4d 02 0b 14 issuer url: 0x9f4d020b14
90 00 ok

8



4.8.1 recover request from response?

0x00c00000 in the beginning corresponds to Book1 9.3.1.3 GET RESPONSE command with no parameters

4.9 Request 5

80 a8 00 00 B3 6.5.8.2 GET PROCESSING OPTIONS
02 data len: 2
83 00 get options: empty list
61 0c ???

4.10 Response 5

00 c0 00 00 0c ???
80 0a tag + length
3c 00 Application Interchange Profile (AIP) bitfield:

dynamic data authentication (DDA) supported,
cardholder verification supported,
perform terminal risk mgmt supported,
issuer authentication supported

08 01 01 00 Application File Location: 1, ShortFileIdentifier:1, records to
read: range(1..1), offline data authentication records: none

10 01 06 01 Application File Location: 2, ShortFileIdentifier:2, records to
read: range(1..6), offline data authentication records: 1

90 00 ok

4.11 Request 6

00 b2 01 0c B1 11.2.2/B3 6.5.11 READ RECORD
P1: record number: 1
ShortFileIdentifier: 1; P1 is record number

00 data length: 0
6c 4f ???

9



4.12 Response 6

00 b2 01 0c 4f ???
70 4d tag+len
57 13 track2 equivalent data
49 10 79 21 37 64 61 73 d card number: 49 10 79 21 37 64 61 73 + terminating 0xD (yes, a

nibble)
14 12 expiration date
22 1 service code
15 65 94 29 00 00 0f ”Discretionary Data” (payment system specific)
5f 20 1a cardholder name
42 41 4b 48 4f 46 46 2f 4d 41 52

54 20 20 20 20 20 20 20 20 20 20

20 20 20 20

’BAKHOFF/MART ’

9f 1f 18 Track 1 Discretionary Data
31 35 36 35 39 30 30 30 30 30 30

30 30 30 30 34 32 39 30 30 30 30

30 30

156590000000000429000000?

90 00 ok

4.13 Request 7

00 b2 01 14 B3 6.5.11 READ RECORD
P1: record number: 1
ShortFileIdentifier: 2; P1 is record number

00 data length: 0
6c 87 ???

10



4.14 Response 7

00 b2 01 14 87 ???
70 81 84 tag + len
5f 25 03 12 10 01 Application Effective Date: (yy/mm/dd) 12 10 01
5f 24 03 14 12 31 Application Expiration Date: (yy/mm/dd) 14 12 31
9f 07 02 ff 00 Application Usage Control bitfield: cash transactions, goods,

services, atms, terminal, both domestic and international
5a 08 49 10 79 21 37 64 61 73 Application Primary Account Number (PAN): 4910 7921 3764

6173
5f 34 01 00 Application Primary Account Number (PAN) Sequence Number:

00
8c 15 Card Risk Management Data Object List 1 (CDOL1)
9f 02 06 amount, authorized
9f 03 06 amount, other
9f 1a 02 terminal country code
95 05 Terminal Verification Results
5f 2a 02 transaction currency code
9a 03 transaction date
9c 01 transaction type
9f 37 04 unpredictable number
8d 17 Card Risk Management Data Object List 2 (CDOL2)
8a 02 authorization response code
9f 02 06 Amount, Authorised
9f 03 06 Amount, Other
9f 1a 02 terminal country code
95 05 Terminal Verification Results
5f 2a 02 transaction currency code
9a 03 transaction date
9c 01 transaction type
9f 37 04 unpredictable number
8e 12 Cardholder Verification Method (CVM)
00 00 00 00 amount field
00 00 00 00 second amount field
44 03 01 03 02 03 1e 03 1f 00 cardholder verification rules (2bytes each)
9f 0d 05 b8 60 ac 88 00 Issuer Action Code - Default
9f 0e 05 00 10 00 00 00 Issuer Action Code - Denial
9f 0f 05 b8 68 bc 98 00 Issuer Action Code - Online
9f 4a 01 82 Static Data Authentication Tag List: [Application Interchange

Profile]
5f 28 02 02 33 Issuer Country Code: 0x0233
90 00 ok

11



4.15 Request 8

00 b2 02 14 B1 11.2.2 READ RECORD
P1: record number: 2
ShortFileIdentifier: 2; P1 is record number

00 data length: 0
6c e3 ???

4.16 Response 8

00 b2 02 14 e3 ???
70 81 e0 tag+len
8f 01 08 Certification Authority Public Key Index: 8[7]
90 81 b0 Issuer Public Key Certificate (tag + length)
25 67 fe b4 1a 19 5a 47 69 5b 89

a0 aa 97 3f 7e 8b 69 ab 05 e0 3b

c7 e0 5d 10 87 8d fe 6c a3 9b ae

6e 24 96 44 22 98 58 3e ac 91 f5

35 ad 32 8c f3 f6 df ec 3e f5 a4

a8 5a 34 62 ca 4b 28 c6 f7 25 dc

5d 25 bf 39 4c f1 cc 87 1c f9 84

69 85 0d ad 90 c0 32 6e 33 3c 5f

ec 1c 7a 2c 6e 1d 4f c1 4e 61 a7

0a 30 6c d5 17 12 a7 c4 01 35 32

67 69 18 b3 4b 71 80 a6 6d a0 d7

ac f2 5d 6f 42 9e fd 33 50 cc 62

7e 15 f2 0e 03 1f 28 62 6f 3d f7

c8 e0 49 bf aa 40 88 b1 c5 74 8c

33 39 f4 3b bc 73 db 89 cb a4 42

33 5c 4c 31 36 27 90 0b 0f b6 43

Issuer Public Key Certificate

9f 32 01 03 Issuer Public Key Exponent: 3
92 24 Issuer Public Key Remainder (tag + length)
8b e3 00 b1 09 ba 1e 63 91 46 82

e1 ad c0 52 c2 5a 16 64 9b d2 d2

b0 0b 85 27 1b 66 c3 e4 77 77 84

c9 ca ad

Issuer Public Key Remainder

90 00 ok

4.16.1 issuer certificate decrypted with VSDC CA Public key

6a 02 49 10 79 ff 12 20 03 20 16 01 01 b0 01 89

a6 e7 18 62 67 69 62 9c 4f 02 6a 18 5a 7d 60 f0

32 96 c7 00 06 ba 27 1f 12 e1 c1 b3 c1 72 9b 82

59 d7 dc 04 5b 26 68 12 f4 89 10 e5 78 5f 9a bd

27 e6 df ae 5b e1 7c 5f 7a 97 6b 76 d7 f5 c8 0a

19 1c ec 2e 2b 0d 01 8f 55 a7 20 17 1b e0 8e be

12



2b 2c 5f ca df fc bc 06 9a de e0 d1 0e 73 0f ec

db 4f 2e 22 04 5a 6c 08 a7 cc fe ae f9 af 3e c3

27 f8 52 f8 ce fe c0 d6 b9 e4 42 23 49 c7 e8 7d

31 8a 73 97 72 f2 db 2d a7 18 e0 4d 60 3c 23 cc

43 c4 84 fa bb 84 86 80 c8 fb d2 a9 b4 00 e9 bc

4.16.2 extracted issuer modulus (Book2 6.3)

89 a6 e7 18 62 67 69 62 9c 4f 02 6a 18 5a 7d 60

f0 32 96 c7 00 06 ba 27 1f 12 e1 c1 b3 c1 72 9b

82 59 d7 dc 04 5b 26 68 12 f4 89 10 e5 78 5f 9a

bd 27 e6 df ae 5b e1 7c 5f 7a 97 6b 76 d7 f5 c8

0a 19 1c ec 2e 2b 0d 01 8f 55 a7 20 17 1b e0 8e

be 2b 2c 5f ca df fc bc 06 9a de e0 d1 0e 73 0f

ec db 4f 2e 22 04 5a 6c 08 a7 cc fe ae f9 af 3e

c3 27 f8 52 f8 ce fe c0 d6 b9 e4 42 23 49 c7 e8

7d 31 8a 73 97 72 f2 db 2d a7 18 e0 8b e3 00 b1

09 ba 1e 63 91 46 82 e1 ad c0 52 c2 5a 16 64 9b

d2 d2 b0 0b 85 27 1b 66 c3 e4 77 77 84 c9 ca ad

4.17 Request 9

00 b2 03 14 B1 11.2.2 READ RECORD
P1: record number: 3
ShortFileIdentifier: 2; P1 is record number

00 data length: 0
6c 0c ???

4.18 Response 9

00 b2 03 14 0c ???
70 0a tag + len
9f 49 03 9f 37 04 Dynamic Data Authentication Data Object List (DDOL):

[Unpredictable Number]
9f 47 01 03 ICC Public Key Exponent: 3
90 00 ok

4.19 Request 10

00 b2 04 14 B1 11.2.2 READ RECORD
P1: record number: 4
ShortFileIdentifier: 2; P1 is record number

00 data length: 0
6c b7 ???

13



4.20 Response 10

00 b2 04 14 b7 ???
70 81 b4 tag + len
9f 46 81 b0 ICC Public Key Certificate (tag + length)
02 da aa 32 47 c9 76 e4 d4 d0 28

76 4e 1a 09 55 60 54 e5 86 54 17

b0 98 04 fd 70 9a 1e c4 0c 18 69

8f 49 a3 43 c1 01 b6 0c 70 0b 6e

64 55 fe 8c 72 11 c2 8f 47 5b 4c

6f 8c 3d 9d ef 40 bd de a2 bd f6

a5 64 68 06 70 88 a3 63 9c 0a cc

7a 32 48 f7 59 1a 9e c2 12 5f 35

39 94 e9 68 03 10 50 a8 c0 e7 98

0f 43 f5 5b b2 b0 5b c9 ef b7 4e

78 68 fb 57 33 e2 20 55 08 f0 8c

0e 12 e9 8c 3d 36 2d 20 0f 3b 15

00 96 84 c6 8b 88 81 dc 0c 23 ff

71 4e 70 01 10 81 ef ed c2 6e d9

a4 eb fe 3d 90 ab 2a 0a c4 24 82

69 49 09 f3 d5 0b d2 18 23 36 ed

ICC Public Key Certificate

90 00 ok

4.20.1 decrypted icc certificate using issuer public key (Book2 6.4)

6a 04 49 10 79 21 37 64 61 73 ff ff 12 14 38 46

34 01 01 80 01 9c 4a c0 dd 6e 40 79 a6 2b 08 d7

45 48 14 26 19 64 3f ca 06 5a 70 14 0b 9a d2 c3

fb 71 c3 4c dc ee 3d f9 ef d5 9d e7 c3 a0 eb 19

17 c9 ba ba de 6d 66 eb 03 9c 77 a4 6c aa 5f 5d

78 c4 9c f2 23 cb e2 71 7d 2f ca f2 97 a2 4e d8

fb 9b d5 21 39 0a d3 d1 be 41 27 c8 7d 03 cd 93

4d dc b6 b1 cb 19 91 1c 7b 89 37 ca 31 fa bc ab

b2 4a 2a f9 c2 32 c3 73 aa e8 fc a8 68 7f 2d ef

b1 07 f6 1d 2d bb bb bb bb bb bb 18 ea d1 99 e4

17 cc ac b2 14 42 65 98 9a c3 d8 37 23 a9 6a bc

4.20.2 extracted icc modulus

9c 4a c0 dd 6e 40 79 a6 2b 08 d7 45 48 14 26 19

64 3f ca 06 5a 70 14 0b 9a d2 c3 fb 71 c3 4c dc

ee 3d f9 ef d5 9d e7 c3 a0 eb 19 17 c9 ba ba de

6d 66 eb 03 9c 77 a4 6c aa 5f 5d 78 c4 9c f2 23

cb e2 71 7d 2f ca f2 97 a2 4e d8 fb 9b d5 21 39

0a d3 d1 be 41 27 c8 7d 03 cd 93 4d dc b6 b1 cb

19 91 1c 7b 89 37 ca 31 fa bc ab b2 4a 2a f9 c2

32 c3 73 aa e8 fc a8 68 7f 2d ef b1 07 f6 1d 2d

14



4.21 Request 11

00 b2 05 14 B1 11.2.2 READ RECORD
P1: record number: 5
ShortFileIdentifier: 2; P1 is record number

00 data length: 0
6c bb ???

4.22 Response 11

00 b2 05 14 bb ???
70 81 b8 tag + len
9f 2d 81 b0 ICC PIN Encipherment Public Key Certificate (tag + length)
2d 54 34 a8 b5 ff 42 53 af fd 9f

df 51 74 c3 a7 51 b8 39 cb 6b a9

1f c6 d3 62 9e e9 bd c5 ba 55 a1

3c 91 8c 41 47 08 8c 42 46 1d 76

73 27 d8 a1 88 d3 2f 55 fa b5 21

8d 91 96 35 d3 bd db ed 31 2b 1b

e3 aa 9a ea 2b 85 6c 4d 16 52 0b

16 74 fe 14 83 4f f4 29 8b fe 09

a1 82 7f 33 9e a9 d7 42 f7 34 19

5b dc 47 47 c2 8d 78 74 0f 01 bd

cf b2 f0 c6 9a 8f af 15 30 76 37

59 af 38 38 95 c3 f0 4f 46 d4 fe

f5 d3 1e dc 02 26 dd 48 94 a0 47

dd 6a 6d c0 7b 02 03 d8 b8 4a c6

d5 e6 9b 10 f8 54 78 63 0b cc 06

56 7a eb 55 c3 89 48 69 6e 85 3d

ICC PIN Encipherment Public Key Certificate

9f 2e 01 03 ICC PIN Encipherment Public Key Exponent: 3
90 00 ok

4.22.1 decrypted PIN certificate using issuer public key (Book2 7.1)

6a 04 49 10 79 21 37 64 61 73 ff ff 12 14 38 46

34 01 01 80 01 b8 02 c0 05 d0 5e f2 05 85 57 1e

54 ad ab be 02 7a 74 d6 03 22 e2 3d 2a c8 1d 21

8e 21 c8 48 5d 7a 72 64 fe 40 34 ec 9f a2 0a b1

9c ba f7 ec 2b 4e 22 25 17 b8 4f 5a 82 0c b9 76

01 83 34 22 36 1e 54 ee f0 75 0d 76 f6 fb ea 91

bd 3c bf 70 98 51 b7 d4 5b c2 6e 40 80 1f 12 c9

87 62 1b 44 25 1d 9d a1 d0 e0 94 69 de 18 b6 dc

a5 c4 79 b3 b0 cb ac a2 d0 43 e4 c7 f0 db b1 0b

17 30 cc f6 f5 bb bb bb bb bb bb f4 b9 ac aa f0

55 71 7c cf 5b a8 81 89 46 c0 06 2a 3f ac 39 bc

15



4.22.2 extracted PIN modulus

b8 02 c0 05 d0 5e f2 05 85 57 1e 54 ad ab be 02

7a 74 d6 03 22 e2 3d 2a c8 1d 21 8e 21 c8 48 5d

7a 72 64 fe 40 34 ec 9f a2 0a b1 9c ba f7 ec 2b

4e 22 25 17 b8 4f 5a 82 0c b9 76 01 83 34 22 36

1e 54 ee f0 75 0d 76 f6 fb ea 91 bd 3c bf 70 98

51 b7 d4 5b c2 6e 40 80 1f 12 c9 87 62 1b 44 25

1d 9d a1 d0 e0 94 69 de 18 b6 dc a5 c4 79 b3 b0

cb ac a2 d0 43 e4 c7 f0 db b1 0b 17 30 cc f6 f5

4.23 Request 12

00 b2 06 14 B1 11.2.2 READ RECORD
P1: record number: 6
ShortFileIdentifier: 2; P1 is record number

00 data length: 0
6c 15 ???

4.24 Response 12

00 b2 06 14 15 ???
70 13 tag + len
9f 08 02 00 8c Application Version Number: 0x008c
5f 30 02 02 21 Service Code: 0x0221
9f 42 02 09 78 Application Currency Code: 0x0978
9f 44 01 02 Application Currency Exponent: 2
90 00 ok

4.25 Request 13 (Dynamic Data Authentication)

00 88 00 00 B3 6.5.9.2 INTERNAL AUTHENTICATE
04 data length: 4
d6 83 42 17 DDOL data: Unpredictable number 0xd6834217
61 83 ???

16



4.26 Response 13

00 c0 00 00 83 ???
80 81 80 Signed Dynamic Application Data (tag + length)
43 c5 b4 a5 18 b7 27 b4 09 aa dc

83 02 5c 48 11 77 7f af 49 1a 6f

1f c1 87 03 43 4c 89 5d a3 bc 64

9c e6 ef 6d 6a 32 f5 3c ef 51 e6

9e 0d 97 8b 1a ff 2b 5a 7c 36 93

3f 37 4b 74 73 27 08 bf 8a e8 2a

4f 5f 90 bf 7e 7d e3 81 bb 10 ae

1c e8 81 08 18 9e d0 6e 05 e9 e1

ee 1d 2a 97 41 ab 23 db b1 3f 09

e0 34 9d bd 58 92 e8 4e 72 76 ad

41 ae f3 1a d3 49 8a 6f bd 65 df

6f 0c 20 83 fd db 5f

Signed Dynamic Application Data

90 00 ok

4.26.1 DDA response decrypted with ICC public key (B2 6.5.2)

6a 05 01 09 08 8a df fb 90 a8 a9 77 11 bb bb bb

bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb bb

bb bb bb bb bb bb bb bb bb bb bb 29 66 c2 93 45

44 bd 9d e5 03 f2 b4 f2 9a bf 7a cb 0d a4 e0 bc

4.27 Request 14 (Cardholder verification)

80 ca 9f 17 B3 6.5.7.2 GET DATA: PIN try counter
00 data len: 0
6c 04 ???

4.28 Response 14

80 ca 9f 17 04 ???
9f 17 01 03 PIN Try Counter: 3 remaining
90 00 ok

4.29 Request 15

00 84 00 00 B3 6.5.6.2 GET CHALLENGE
00 data len: 0
6c 08 ???

17



4.30 Response 15

00 84 00 00 08 ???
6e 46 d1 ff 7f 6e 61 30 8-byte unpredictable number generated by the ICC
90 00 ok

4.31 Request 16

00 20 00 88 B3 6.5.12.2 VERIFY: encrypted PIN (B2)
80 data len: 128
27 82 e7 f7 1b 5f 5d 7c b3 cf ba

85 d2 4d 6d 41 59 fa c4 b2 69 96

8b d5 f9 46 69 f9 e7 0c 9b 43 79

40 a8 0d 90 f4 73 c9 7b 4a 24 82

68 ef 99 a6 7c cd a0 32 6f b2 94

70 fe 9c 1c 7a ae 86 75 fd c2 36

5e ee 24 80 f5 5f 8b 85 88 05 09

ec 04 86 0a bc de ad 60 3f ce ac

f0 c7 68 ac 5f 1e ff ba 06 b3 6b

9a 7a 58 ea 61 df bf 72 a6 d6 0c

81 98 08 d3 c0 71 42 8d df c2 fc

61 17 ae e0 3e 31 a0

encrypted PIN

90 00 ???

4.32 Response 16

MISSING

4.32.1 recover status code from request?

The request ends with an unusual 0x9000 - maybe that’s the status code of the response

4.33 Request 17 (Online processing)

80 ae 80 00 GENERATE AC: ARQC (B3 6.5.5.2)
1d data length: 29
00 00 00 00 00 99 amount, authorized
00 00 00 00 00 00 amount, other
02 33 terminal country code
00 00 00 80 00 Terminal Verification Results: transaction exeeds floor limit
09 78 transaction currency code
14 09 25 transaction date
00 transaction type
d6 83 42 17 unpredictable number
61 20 ???

18



4.34 Response 17

00 c0 00 00 20 ???
77 1e tag + len
9f 27 01 80 Cryptogram Information Data: 0x80 (ARQC)
9f 36 02 03 77 Application Transaction Counter (ATC): 0x0377
9f 26 08 Application Cryptogram (tag + length)
ac 74 08 bb 16 b2 b8 6d Application Cryptogram
9f 10 07 Issuer Application Data (tag + length)
06 01 0a 03 a4 20 02 Issuer Application Data

4.34.1 CDOL1

request data defined in CDOL1

4.35 Request 18

00 82 00 00 EXTERNAL AUTHENTICATE (B3 6.5.4)
0a data length
83 1c 2b df 91 08 e0 70 30 30 Issuer Authentication Data
90 00 ???

4.36 Response 18

MISSING

4.37 Request 19 (Transaction authorization)

80 ae 40 00 Generate AC: Transaction Certificate (B3 6.5.5.2)
1f data len: 31
30 30 authorization response code
00 00 00 00 00 99 amount, authorized
00 00 00 00 00 00 amount, other
02 33 terminal country code
00 00 00 80 00 Terminal Verification Results: transaction exeeds floor limit
09 78 transaction currency code
14 09 25 transaction date
00 transaction type
d6 83 42 17 unpredictable number
61 20 ???

19



4.38 Response 19

00 c0 00 00 20 ???
77 1e tag + len
9f 27 01 40 Cryptogram Information Data: 0x40 (TC)
9f 36 02 03 77 Application Transaction Counter (ATC): 0x0377
9f 26 08 Application Cryptogram (tag + length)
c2 f1 92 98 bd 19 a7 fe Application Cryptogram
9f 10 07 Issuer Application Data (tag + length)
06 01 0a 03 64 20 02 Issuer Application Data
90 00 ok

4.38.1 CDOL2

request data defined in CDOL2

20


	Introduction
	Capturing The Transaction
	Simtrace
	Captured Transaction
	Discrepancies in the data

	Analysis of Captured Data
	Application selection
	Read application data
	Data authentication
	Cardholder verification
	Risk and restrictions processing
	Online processing
	Final processing

	Conclusion
	Request 1 (Application selection)
	Response 1
	Request 2
	Response 2
	Request 3
	Response 3
	command mismatch?

	Request 4 (Reading application data)
	Response 4
	recover request from response?

	Request 5
	Response 5
	Request 6
	Response 6
	Request 7
	Response 7
	Request 8
	Response 8
	issuer certificate decrypted with VSDC CA Public key
	extracted issuer modulus (Book2 6.3)

	Request 9
	Response 9
	Request 10
	Response 10
	decrypted icc certificate using issuer public key (Book2 6.4)
	extracted icc modulus

	Request 11
	Response 11
	decrypted PIN certificate using issuer public key (Book2 7.1)
	extracted PIN modulus

	Request 12
	Response 12
	Request 13 (Dynamic Data Authentication)
	Response 13
	DDA response decrypted with ICC public key (B2 6.5.2)

	Request 14 (Cardholder verification)
	Response 14
	Request 15
	Response 15
	Request 16
	Response 16
	recover status code from request?

	Request 17 (Online processing)
	Response 17
	CDOL1

	Request 18
	Response 18
	Request 19 (Transaction authorization)
	Response 19
	CDOL2



