
Identity Card Key Generation in the Malicious

Card Issuer Model

Arnis Parsovs

May 27, 2014

Abstract

The generally accepted practice, where the electronic identity card is-
suer generates private keys on behalf of the cardholder, allows for a mali-
cious card issuer to compromise the security of cardholder’s private keys.
In this report we discuss several solutions for improving a cardholder’s
private key security against a malicious card issuer.

1 Introduction

Governments in several countries around the world issue Electronic Identity
Cards (eID cards) to their residents. These cards are smart cards which usually
contain RSA key pairs that are bound to a resident’s identity and allow the
resident to authenticate in online services, sign electronic documents with a
digital signature, and perform encrypted communication between residents.

The security of an eID card depends on the cardholder being the only one
who can use the private key which has been bound to their identity. Therefore,
the private key is usually kept in a single copy inside a tamper resistant smart
card and the private key operations are performed only after the cardholder has
authenticated theirself to the smart card using a symmetric PIN code shared
only between the cardholder and smart card.

In practice, the card issuer (usually the government or its delegated party)
provides cardholders with fully personalized smart cards that contain an RSA
key pair, an X.509 public key certificate and PIN codes generated for the card-
holder.

By applying security threat modeling for smart cards [1] we see that since
the card issuer in this case is not the data owner, the reliance on the issuer in
providing security for a cardholder’s private key opens up the possibility for a
malicious card issuer to launch attacks against the cardholder.

The designers of the eID card presuppose that the card issuer holds the best
interests of the cardholder. This, however, might not necessarily be the case,
and as we know from security economics, where the party who is in a position
to protect a system is not the party who would suffer the results of security
failure, problems may be expected [2].

1



One such problem was recently found in the Taiwanese eID card. The hard-
ware random-number generator built in the smart card was fatally flawed, al-
lowing anyone to recover private keys stored on these cards [3].

In this report we will discuss possible solutions that could provide a card-
holder’s private key improved security even in the case of a careless or malicious
card issuer. To simplify our analysis, we will assume that the card issuer, the
card manufacturer, and the Certificate Authority (CA) issuing the certificates
is the same, possibly malicious party.

2 Attacks by the issuer against the cardholder

The most straightforward attack against a cardholder is to compromise the se-
crecy of the cardholder’s private key. As the card issuer is the one who produces
the smart card and generates the keys for the cardholder, compromising a card-
holder’s private key is trivial. In the simplest form of the attack the issuer
simply saves a copy of the cardholder’s private key before loading it into the
smart card.

To avoid such accusations, the card issuers usually claim that the key pair
is generated on the card using the built-in secure hardware random number
generator and that there is no way for a private key to ever leave the smart
card. These claims are usually attested by independent smart card security
certification, such as Common Criteria or FIPS 140.

Unfortunately, there is no way for anyone other than the card issuer to ensure
that the chip and the software that has passed the certification is the one that
is used in the card. Furthermore, as we learn from the Taiwanese eID card
case, the certified card may allow insecure key generation with “FIPS mode”
disabled [3] and only the issuer will know whether this was the case.

It is possible to argue that we have to trust the issuer anyway, since a mali-
cious issuer can always impersonate the cardholder even without compromising
his private key, for instance, by unlawfully issuing and using a certificate that
cointains the name of the cardholder. However, while the use of a mis-issued
certificate can be traced back to the CA with cryptographic precision, there
is no way to trace back who holds a copy of the private key which has been
abused. Under the European Directive 1999/93/EC (see Article 6 in [4]) the
CA is liable for actions performed with a mis-issued certificate. Therefore, while
a malicious card issuer can indeed temporarily impersonate the cardholder, the
eventual discovery of misuse is a deterrent for the card issuer from mis-issuing
certificates. Unfortunately, there is no effective attribution measure that would
deter the issuer from abusing a cardholder’s private keys.

2



3 Possible solutions

3.1 Private key generated by the cardholder

The simplest solution would be to completely remove the issuer’s role in the
cardholder’s private key generation and storage, making it the sole responsi-
bility of the cardholder (as is practiced when issuing TLS server certificates).
The cardholder could generate the private key using his own media and include
the corresponding public key in the application form when applying for the
certificate. This, however, would be too complicated for most of the cardhold-
ers and the corresponding private keys would likely end up being stored in an
unprotected media which would be against our original intention to improve
the private key security. In fact, the European Directive 1999/93/EC requires
the signature-creation-data to be stored in a secure signature-creation device,
which must ensure that the signature-creation-data can practically occur only
once and signature generation can be reliably protected by the legitimate sig-
natory against the use of others (see ANNEX III in [4]). Therefore, storing
the private key somewhere other, than in a tamper resistant device, would be
against the directive.

A straightforward improvement would be to ship the smart cards without the
private keys loaded, but with the cardholder initiating the key generation on the
first use of the eID card. This would guarantee that the keys are generated on
the card. However, a malicious issuer can make the random number generator
predictable (for example, by seeding PRNG with the card’s serial number) or
even generate the RSA key pair such that the private key can be efficiently
reconstructed knowing only the public key [5].

3.2 Use of two keys

A desirable security level against a malicious card issuer would be achieved if
the cryptographic operations performed by the cardholder would require use of
two keys – one generated and stored on a smart card produced by the issuer, and
another generated and stored on any medium owned by the cardholder. The
digital signature would be considered valid only if data has been signed using
both keys. Similarly, for hybrid encryption the symmetric transport key could
be split into two parts using a secret sharing scheme and both parts encrypted
using distinct public keys. This would prevent a malicious issuer from abusing
the private key that has been generated for the cardholder and would protect the
cardholder if anyone (except the issuer) has compromised his carelessly stored
private key.

While optimal, the solution is not practical, since it requires significant
changes in the user interface, standards, and protocols as they are used today.

3



3.3 Threshold RSA

The same security benefits as in the two key use scenario can be achieved using
a single key, but by performing key generation and private key operations in a
distributed manner. In this scenario, as the RSA public key would be generated
by the issuer’s smart card and the cardholder’s device, no single device could
perform private key operations without collaborating.

The first two-party RSA protocol has been suggested in [6] by Gilboa. Straub
in [7] proposed a more efficient protocol that generates 3-prime RSA. Recently,
Hazay et al. [8] proposed the first protocol secure against an active adversary.
The semi-honest protocol implementation of [8] described in [9] shows that a
2048-bit RSA key can be generated in 15 minutes on average on the Intel Core i5
dual core 2.3 GHz CPU. Unfortunately, if one of the parties is a smart card with
low computational resources, the estimated generation time would probably
reach several days, which makes this approach undeployable in practice.

Even if it was efficient, the solution still requires the private key share to
be stored on the cardholder’s computer. This creates portability issues and
has a risk that the eID solution becomes unusable if the cardholder’s computer
becomes unusable.

3.4 Abuse-free RSA key generation

In this solution the private key is fully stored on the smart card provided by
the card issuer. However, the private key is generated in an abuse-free way in
cooperation with the cardholder’s computer, such that neither the issuer nor
the cardholder can learn the private key.

In this section we will discuss several protocols which can be used to achieve
this. It is important to note, however, that this approach compared to the
previous solutions, does not give the same protection against a malicious issuer.

A malicious issuer can deliberately weaken the smart card or implement
backdoors that will leak the private key through various side channels. In the
simplest form of the attack the smart card can simply return the cardholder’s
private key to the terminal if the terminal sends a special command to the card.
Fortunately, these attacks require the card issuer to be in direct contact with
the card after the key has been generated. In the current eID card use case the
terminal is usually owned by the cardholder (terminal being the cardholder’s
card reader and computer) and the card is rarely1 inserted in a terminal that is
under the card issuer’s control.

A malicious smart card could also try to use a signature as a covert channel
to leak the private key. However, RSA PKCS#1 v1.5 signing scheme uses
deterministic padding2, thus the only place where the private key can be encoded
would be the message itself, which would result in a failure to verify the signature
of the signed document.

1One such case is the PIN escrow mechanism provided by the issuer which allows the
issuer to reset a card’s PIN codes in case the cardholder has forgotten them. The procedure
is performed after the cardholder’s identity has been verified at the issuer’s customer service
point.

2The less popular padding scheme RSA-PSS uses random padding, which could be used
by a smart card to leak the private key.

4



Therefore, while the abuse-free RSA key generation approach does not pro-
tect against a malicious issuer who can obtain direct access to the card later in
the smart card lifecycle, the use of this approach will eliminate the risk of pri-
vate key compromise that is caused by intentional or unintentional randomness
flaws in the smart card. This will require a malicious issuer to carry out a more
sophisticated attack, increasing the conspiracy level required and thus the risk
of being caught.

3.4.1 Threshold RSA

We can obtain abuse-free key generation immediately by using protocols de-
scribed in the threshold RSA solution, since by definition threshold RSA gen-
erates private keys in an abuse-free manner. After the key is generated using
the threshold RSA protocol, the cardholder’s computer simply sends his private
exponent share to the smart card.

In the following subsections we will discuss abuse-free key generation ap-
proaches that do not require distributed private key operations and therefore
are more efficient than the two party threshold RSA protocols.

3.4.2 Verifiable randomness

In these protocols the smart card would prove to the cardholder that the ran-
domness received from the cardholder was mixed with the smart card’s ran-
domness to generate unpredictable RSA factors. The first generic protocol was
suggested by Desmedt in [10]. There, the cardholder’s computer would send
randomness to the smart card, and the smart card, using commitments and
zero-knowledge proofs, would prove that the randomness from the cardholder’s
computer was used to generate the RSA modulus in an abuse-free way.

A specific protocol was proposed by Juels-Guajardo in [11]. The work [12]
estimates that the Juels-Guajardo protocol would likely take over 40 minutes
to execute on a home router, which likely would take several days on a low
performance smart card, making the protocol impractical for our purpose.

3.4.3 Multi-prime RSA

In this protocol, proposed by the author, the cardholder’s computer and smart
card would generate a 4096-bit 4-prime balanced RSA modulus, which would
be constructed from four 1024-bit prime factors (p1, q1, p2, q2). The card issuer
would the ship the smart card containing p1, q1 and e = 655373. On the first
eID use, the following protocol would be executed between the cardholder’s
computer and the smart card4.

1. The smart card sends p1 · q1 (or it’s commitment) to the cardholder’s
computer.

3Public exponent e is fixed to prevent it from being used as a covert channel.
4Note that this does not require any interaction from the cardholder.

5



2. The cardholder’s computer generates p2, q2, such that gcd(p2 − 1, e) = 1
and gcd(q2 − 1, e) = 1, and sends it to the smart card.

3. The smart card calculates n, d and returns n to the computer, revealing
the committed value from step 1.

4. The cardholder’s computer will verifies whether p2 · q2 divides n without
a remainder to ensure that the modulus contains the cardholder’s factors.

5. The cardholder’s computer verifies whether n
p2·q2 is equal to the p1 · q1

received in the first step to ensure that the smart card’s factors p1, q1 do
not depend on the cardholder’s p2, q2.

6. The cardholder’s computer sends n to the card issuer.

7. The issuer verifies whether the p1 ·q1 stored in the issuer’s database divides
n without a remainder (to ensure that the modulus contains the issuer’s
factors – this prevents the cardholder from obtaining a certificate for a
private key that does not reside on the smart card).

8. The issuer returns an X.509 certificate to the cardholder’s computer.

9. The cardholder’s computer loads the X.509 certificate into the smart card.

As can be seen from the protocol, the card issuer is unable to learn the
factorization of p2 · q2, and in turn the cardholder is not able to learn the
factorization of p1 · q1. Therefore, for the malicious issuer, the cardholder or
anyone who has compromised the cardholder’s computer (except the issuer),
the effective security of the private key is equivalent to 2048-bit RSA, while
for all other attackers the private key has 4096-bit RSA security (see Section 2
in [13]).

The protocol involves only a few simple calculations, however, the drawback
being the rather large size of the public key – 4096 bits. Compared to 2048-bit
RSA, the 4096-bit RSA public key operations are approximately 4 times slower,
while private key operations are only 2 times slower if the Chinese remainder
theorem is used.

4 Conclusion

In this report we have discussed several solutions that could improve a card-
holder’s private key security against a malicious card issuer. While practically
deployable solutions do not provide full security against a malicious issuer, they
do eliminate private key compromise caused by unintentional or intentional ran-
dom number generator flaws and thus require more sophisticated attacks by the
card issuer.

6



References

[1] Bruce Schneier and Adam Shostack. Breaking Up is Hard to Do: Modeling
Security Threats for Smart Cards. In Proceedings of the USENIX Workshop
on Smartcard Technology on USENIX Workshop on Smartcard Technology,
WOST’99, pages 19–19, Berkeley, CA, USA, 1999. USENIX Association.

[2] R. Anderson. Why information security is hard - an economic perspec-
tive. In Computer Security Applications Conference, 2001. ACSAC 2001.
Proceedings 17th Annual, pages 358–365, Dec 2001.

[3] Daniel J. Bernstein, Yun-An Chang, Chen-Mou Cheng, Li-Ping Chou, Na-
dia Heninger, Tanja Lange, and Nicko van Someren. Factoring RSA Keys
from Certified Smart Cards: Coppersmith in the Wild. In Kazue Sako and
Palash Sarkar, editors, ASIACRYPT (2), volume 8270 of Lecture Notes in
Computer Science, pages 341–360. Springer, 2013.

[4] Directive 1999/93/EC of the European Parliament and of the Council of
13 December 1999 on a Community framework for electronic signatures.
Official Journal L13/12, 1999.

[5] Claude Crpeau and Alain Slakmon. Simple Backdoors for RSA Key Gen-
eration. In Marc Joye, editor, Topics in Cryptology CT-RSA 2003, volume
2612 of Lecture Notes in Computer Science, pages 403–416. Springer Berlin
Heidelberg, 2003.

[6] Niv Gilboa. Two Party RSA Key Generation. In In Crypto 99, LNCS
1666, pages 116–129. Springer-Verlag, 1999.

[7] Tobias Straub. Efficient Two Party Multi-Prime RSA Key Generation.
In IASTED International Conference on Communication, Network, and
Information Security, 2003.

[8] Carmit Hazay, GertLsse Mikkelsen, Tal Rabin, and Tomas Toft. Efficient
RSA Key Generation and Threshold Paillier in the Two-Party Setting.
In Orr Dunkelman, editor, Topics in Cryptology CT-RSA 2012, volume
7178 of Lecture Notes in Computer Science, pages 313–331. Springer Berlin
Heidelberg, 2012.

[9] Angelo Agatino Nicolosi. Efficient RSA Key Generation Protocol in a
Two-Party Setting and its Application into the Secure Multiparty Com-
putation Environment. Master thesis, University of Århus, 2011. https:

//users-cs.au.dk/amenuor/AngAgaNic-MasThes.pdf.

[10] Yvo Desmedt. Abuses in Cryptography and How to Fight Them. In Shafi
Goldwasser, editor, Advances in Cryptology CRYPTO 88, volume 403 of
Lecture Notes in Computer Science, pages 375–389. Springer New York,
1990.

7



[11] Ari Juels and Jorge Guajardo. RSA Key Generation with Verifiable Ran-
domness. In David Naccache and Pascal Paillier, editors, Public Key Cryp-
tography, volume 2274 of Lecture Notes in Computer Science, pages 357–
374. Springer Berlin Heidelberg, 2002.

[12] Henry Corrigan-Gibbs, Wendy Mu, Dan Boneh, and Bryan Ford. Ensuring
High-quality Randomness in Cryptographic Key Generation. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS ’13, pages 685–696, New York, NY, USA, 2013. ACM.

[13] M. Jason Hinek. On the security of multi-prime RSA. Journal of Mathe-
matical Cryptology, 2(2):109–207, 2008.

8


