
Reproducing Vote Verification Application Builds for

Estonian I-Voting System

Report in Research Seminar in Cryptography (MTAT.07.022)

Annika Tammik
University of Tartu, Tartu, Estonia

December 20, 2017

1 Introduction

Internet voting has been available for Estonians already for more than 10 years – the first election
which gave the possibility to vote online in Estonia was conducted in 2005. During this whole
period, the basic concept behind the internet voting has stayed the same. It mimics the double
envelope postal voting where the “inner” envelope is the vote encryption done with the server’s
public key and the signed “outer” envelope is the signing done with the national eID signing
device (ID card, Mobile-ID or Digi-ID). [1]

In 2011 several potential attacks were published against this rather simple scheme. To counter
such attacks, vote verification scheme was launched in 2013 that allows the voters to verify the
cast vote using a mobile device [2]. Currently the vote verification application is provided for
Android and iOS mobile operating systems, the distribution channels being Google Play Store1

and iOS App Store2. The source code of these apps is published on Estonian National Electoral
Committee’s GitHub repository [3] to give a possibility for the public to audit the code and verify
that the verification apps work as expected.

The main objective of this work is to check whether the vote verification applications dis-
tributed in the app stores can be compiled from the source code that has been made publicly
available by Estonian National Electoral Committee. The experiments were performed using the
Vote Verification application versions that were distributed in the I-voting period of the Estonian
municipal council election held in October 2017 [4].

The report will go through the different steps that were done during this experiment – mon-
itoring the binaries, building the app from the source code, comparing build result with the
distributed version and trying to reproduce it based on the differences found. Last but not least,
there are also some recommendations to the app developers and the Estonian National Electoral
Committee on what could be changed in order to make the build process and the reproduction
of the apps easier.

2 Monitoring the Apps in the App Stores

Apps are designed for mobile devices and due to that their only official distribution channel is
the app store that is integrated into those supported devices. Thus, the main challenge in the

1https://play.google.com/store/apps/details?id=ee.ivxv.ivotingverification
2https://itunes.apple.com/us/app/eh-kontrollrakendus/id1265172086

1

https://play.google.com/store/apps/details?id=ee.ivxv.ivotingverification
https://itunes.apple.com/us/app/eh-kontrollrakendus/id1265172086

monitoring part was to find a way how to download the apps from the app stores into a device
that is neither a phone nor a tablet. It was especially challenging as downloading apps to a
non-mobile device is neither expected nor officially supported by the app stores. This means
that there is also not much relevant documentation nor any official guidelines available on how
to do this.

2.1 Android

In case of Android there are several sites3,4 from where it is possible to download the Google
Play Store apps. Yet, as the objective of this work is to verify the binaries distributed from the
official app store, then using the available unofficial web solutions was in the current context not
an option.

There are also several GitHub projects5,6 that provide an unofficial API for downloading the
apps from Google Play Store. The problem there, though, is that most of those projects are 3 -
5 years old, sometimes poorly documented and most important – they do not work. Fortunately,
after trying out several different projects the Google Play Unofficial Python API7 was found to
be actively developed and actually working. Thus, this project was used to build Google Play
Store app monitoring.

2.2 iOS

In case of iOS the problem of app binary availability is even more severe. There again are a few
websites8,9 that promote a possibility to download iOS apps online. Yet, when trying to actually
download the apps, all those sites do is redirect the user to the official iTunes preview page of
the selected app. Also, searching for unofficial iOS App Store API projects from GitHub gives
no results, similarly to all the Google searches for any relevant guidelines.

As another option, it used to be possible, using the App Store in iTunes desktop version, to
at least download the binaries of the iOS apps from the connected iOS mobile device (for backup
purposes). Earlier this year such possibility was removed when the backup policy of apps on iOS
devices was revised and App Store integration removed from iTunes [5].

Thus, as there seems to be no straightforward way to download iOS apps through an API to
a computer, then the iOS apps were left out of the scope of this work.

2.3 Vote Verification App in Google Play Store

2.3.1 Downloading binaries from Google Play App Store

The downloading of an app from Google Play App Store requires several requests with different
complexity of payload.

First of all, in order to get access to the Play Store services, authorization is needed. For a
new user this is a 3-step process. As the first step, a login request must be made using valid
credentials from a Google account. A successful login request will return an authentication key
and a token. As the second step, a device check-in is required where the device data10 has to

3https://apkpure.com
4https://apps.evozi.com/apk-downloader/
5https://github.com/egirault/googleplay-api
6https://github.com/CMUChimpsLab/googleplay-api
7https://github.com/NoMore201/googleplay-api
8https://en.softonic.com/iphone
9http://download.cnet.com/s/software/ios/

10For the implementation being, the OnePlus One smartphone was emulated.

2

https://apkpure.com
https://apps.evozi.com/apk-downloader/
https://github.com/egirault/googleplay-api
https://github.com/CMUChimpsLab/googleplay-api
https://github.com/NoMore201/googleplay-api
https://en.softonic.com/iphone
http://download.cnet.com/s/software/ios/

be sent together with the acquired authentication key to receive a Google device identifier. The
last step requires another login request, using the token from the first login request, to acquire
a reusable authentication key. Both, the device identifier and the second authentication key are
required to be set as headers to all the subsequent requests.

As the downloads can only be made when the package name and the version code is known,
a search query is needed to translate the app name to the package name (in the current case
from “EH kontrollrakendus” to “ee.ivxv.ivotingverification”). When knowing the package name,
it is possible to make a details query to determine the last available version (identified by the
version code value) of the package. The package name and the version code are prerequisites for
the downloading.

Downloading an app from Google Play Store is another 3-step process. First of all, a purchase
request must be made with the package name and a version code. If the user is allowed to
download the requested app, a download token is returned. The token can be used to obtain
a delivery URL together with an authentication cookie that is also required for the delivery
request. Finally, using the received URL and the authentication cookie, the actual binary .apk

package can be downloaded.

2.3.2 Android App Monitoring System

Since for the app monitoring purpose only a small part of the Google Play Unofficial Python
API is required, a separate project was created with the focus on the monitoring. As a result,
there is now a Google Play Store App Monitor available in BitBucket11 that can be used to
automatically download new versions of free Android apps.

Steps needed to set up the Google Play App Store Monitor:

1. Clone the Google Play App Store Monitor:

$ git clone https :// bitbucket.org/emomeio/google_play_store_app_monitor.git

2. Move to the cloned folder:

$ cd google_play_store_app_monitor

3. Follow the instructions from the README.md file.

2.3.3 Monitoring the Vote Verification App in Google Play Store

The internet voting period of the municipal council election was from the 5th until the 11th
of October 2017 [4]. Before elections, on the 2nd of October a new version (version code 18)
of the vote verification app was released in Google Play Store. The app12 was called “EH
kontrollrakendus” with the package name “ee.ivxv.ivotingverification”.

During the voting period the monitoring was done daily. On the evening of the 10th of
October this resulted in downloading a new binary version of the application (version code 22)
from Google Play Store. Looking into the details available through the monitoring project’s
details API it was possible to see that the new version had been released due to “Fixes in
connection with not updated ID-cards”:

details {
appDetails {

developerName: "Cybernetica AS"
versionCode: 22

11https://bitbucket.org/emomeio/google_play_store_app_monitor
12https://play.google.com/store/apps/details?id=ee.ivxv.ivotingverification

3

https://bitbucket.org/emomeio/google_play_store_app_monitor
https://play.google.com/store/apps/details?id=ee.ivxv.ivotingverification

versionString: "3.1.8"
...
packageName: "ee.ivxv.ivotingverification"
recentChangesHtml: "Parandused seoses uuendamata ID-kaartidega"
uploadDate: "Oct 10, 2017"
...

}
}

Thus, there were two versions of the Android Vote Verification app released that were used to
verify the cast vote during those elections. This results in two samples available for the further
analysis:

1. ee.ivxv.ivotingverification 18.apk13 – downloaded on October 2, 2017.

2. ee.ivxv.ivotingverification 22.apk14 – downloaded on October 10, 2017.

3 Building the Android Vote Verification App from Source
Code

The source code of the Android Vote Verification App was published in GitHub [3] on the 5th
of September with one commit. What is significant, though, is that the source code available in
GitHub has not been updated since then (last checked: December 9th, 2017). This means that
the source code of the updated app (version code 22) released during the election period has
not been made publicly available. This makes already clear that it will not be possible to fully
reproduce the second binary released during the voting period.

Nevertheless, to build any software, it is useful to have software build instructions avail-
able. In case of the Android Vote Verification App no information neither in the form of a
README.md file nor a set-up script was available. In such cases, it is useful to look into the
technology stack used in the project to understand which dependencies are required. Thus,
first of all, since it is an Android app, the Android SDK is needed. Also when looking at
the source code, it is possible to see that the app is written in Java (application code is in
ivotingverification/app/src/main/java folder and the files there have a .java extension)
and uses Gradle as the build system (there is a build.gradle file in the project root folder).
Thus, apparently, Java and Gradle are also required to build the app.

As in the current stage it is still unclear if and to what extent version numbers of the compilers
and dependencies might affect the build result, the latest versions are used.

3.0.1 Steps to build the Vote Verification App (on Ubuntu 16.04)

1. Download Android SDK:

$ wget http ://dl.google.com/android/android -sdk_r24.2-linux.tgz

$ tar -xvf android -sdk_r24.2-linux.tgz -C $HOME
$ cd $HOME/android -sdk -linux/tools
$ echo ’y’ | $HOME/android -sdk -linux/tools/android update sdk --no -ui

$ export PATH=${PATH}:$HOME/android -sdk -linux/platform -tools
$ export PATH=${PATH}:$HOME/android -sdk -linux/tools
$ export PATH=${PATH}:$HOME/android -sdk -linux/build -tools /22.0.1/
$ export ANDROID_HOME=${HOME}/android -sdk -linux/

$ sudo apt -get install libc6:i386 libstdc ++6: i386
$ sudo apt -get install zlib1g:i386

13SHA256: 35dac3859ffbe4d85acd20e51c117f17425b26e2db4520ce9aea7533e7583c94
14SHA256: cbb1f86cebfcd2c02715e6ca2999b5d609ab6aecb092115d25b205ddc00f221b

4

2. Download Java JDK:

$ sudo apt -get install openjdk -8-jdk
$ apt -cache search jdk

$ export JAVA_HOME =/usr/lib/jvm/java -8-openjdk
$ export PATH=$PATH :/usr/lib/jvm/java -8-openjdk/bin

$ javac -version
javac 1.8.0 _151

3. Download Gradle:

$ sudo mkdir /opt/gradle
$ wget https :// services.gradle.org/distributions/gradle -4.3.1 - bin.zip
$ sudo unzip -d /opt/gradle gradle -4.3.1 - bin.zip

$ export PATH=$PATH :/opt/gradle/gradle -4.3.1/ bin

4. Download the source code of the app and checkout relevant revision:

$ git clone https :// github.com/vvk -ehk/ivotingverification.git
$ cd ivotingverification
$ git checkout 20 e64ed8726cba1b19e28b0ed00ef95ffcd36d3a

5. View the app’s dependency tree for required local dependencies:

$ gradle androidDependencies
...
+--- __local_jars__ :/home/at/ivotingverification/app/libs/xom -1.2.10. jar:unspecified@jar
\--- __local_jars__ :/home/at/ivotingverification/app/libs/zxing_core -3.1.0. jar:unspecified@jar

6. Add missing libraries:

$ cd app
$ mkdir libs
$ cd libs

$ wget http :// central.maven.org/maven2/com/io7m/xom/xom /1.2.10/xom -1.2.10. jar

$ wget http :// central.maven.org/maven2/com/google/zxing/core /3.1.0/ core -3.1.0. jar
$ mv core -3.1.0. jar zxing_core -3.1.0. jar

7. Build the app:

$ gradle assemble

8. Go to the build outputs folder and verify that the .apk was created there. The name of
the file to look for is app-release-unsigned.apk.

$ cd [CORRECT_PATH]/ ivotingverification/app/build/outputs/apk/

As a result of this build process an app-release-unsigned.apk15 file is produce which is
an unsigned version of the Vote Verification App. Therefore, it is expected that even if the
source code and the build environment are exactly the same, the result will not directly match
the corresponding binaries. In order to understand weather the hash difference comes only from
the signing block or are there also other differences in the files, a binary comparison has to be
conducted.

15SHA256: 2f5c4139ec9920cae14c67df58b4c0dc84606d32466487311af999ab915fbe56

5

4 Reproducing the Android Vote Verification App

Reproducible builds are a set of software development practices that create a verifiable path from
human readable source code to the binary code used by computers. Meaning, that if two different
people compile the project from the same source code, their outputs are bitwise identical to each
other and to the binary distributed by the owner of the code. This allows people to verify that
binaries downloadable from the Internet come from the corresponding sources and have not, for
example, had malware added to them.16

If the build process is not set up by knowingly following the principles of reproducible builds,
then it is very likely that the build reproduction will not work just out of the box. In those cases,
when still aiming to achieve a matching binary, the first task is to find the actual differences
through binary comparison. When the differences are found, it is important to understand what
has caused those differences in order to, if possible, reproduce an environment that would also
include those causes.

4.1 The APK file type

Before actually comparing anything, it is important to generally understand what will be com-
pared. Thus, Android apps are in more precise terms Android Package Kits17 or just APKs. In
essence APKs are just one type of archive files that are used by the Android operating system.
Their file extension, similarly to the name, is .apk. After a program that is meant for the An-
droid operating system is compiled, all of its parts are packaged into the APK file. The easiest
way to explore the contents of an .apk file is by renaming the filename extension it to .zip and
then opening it with any of the ZIP decompression tools.

4.1.1 Structure of an APK file

1. META-INF/: A folder holding the signature info and containing18:

• MANIFEST.MF: A file that holds a list of all the files in the APK (except the items in
the META-INF folder itself) and hashes of their contents. The default algorithm used
is SHA-1 and the digest is represented in a base64-encoded form.

• CERT.SF: A file that contains SHA-1 hash of file MANIFEST.MF file and all the items
in it.

• CERT.RSA: A file that contains the developer’s signature of the CERT.SF file and a
certificate or a certificate chain to verify the key that was used for this signature.

2. lib/: A folder for native device specific libraries, if such are used by the app.

3. classes.dex: An executable file that contains compiled Java classes.

4. resources.arsc: A binary file that contains compiled resources such as images, strings,
or other data used by the program.

5. res/: A folder containing resources (such as images, layouts, animations etc.) that are not
compiled into resources.arsc.

16https://reproducible-builds.org/
17https://developer.android.com/guide/components/fundamentals.html
18https://github.com/dweinstein/android_notes/wiki/AndroidPackageSignatures

6

https://reproducible-builds.org/
https://developer.android.com/guide/components/fundamentals.html
https://github.com/dweinstein/android_notes/wiki/AndroidPackageSignatures

4.2 Potential Differences in the APKs

For this comparison the first released version (version code 18) was chosen, as this has potentially
less differences compared to the published source code and thus, also to the self-compiled version.
Before the actual binary analysis, let’s recall the reasons why those two binaries will likely differ.
First of all, there is the difference coming from the signature block (META-INF folder), that only
the official version fully has. Secondly, it is highly likely that the released source code was not
used to compile the released version. The reason for this suspicion comes from the fact that only
one single commit was made to the repository and it was made almost one month before the
actual release of the app. Also, there is a file ivotingverification/app/build.gradle in the
project that should theoretically include the build configuration used to compile the package.
However, the version code there is set to 16 and version string to 3.1.3 (see Listing 1), while in
the distributed version of the app these numbers were 18 and 3.1.5, respectively.

defaultConfig {
applicationId: "ee.ivxv.ivotingverification"
minSdkVersion: 16
targetSdkVersion: 26
versionCode: 16
versionName: "3.1.3"

}

Listing 1: Extract from the ivotingverification/app/build.gradle file

Last but not least, another possible source of differences can be in the version numbers of the
dependencies and the environment used for compiling.

4.3 Comparing the APKs

There are quite a few tools available for comparing binaries. The first tool that provided clear
results was diffoscope – a program that is able to do in-depth comparison of files, archives
and directories. Multiple formats are available for the output file including an HTML file. The
visualisation that is provided by the .html format is appealing as the file level differences are
very easily noticeable.

As a result of running diffoscope on the binaries, the files with differences in them were
highlighted (see Figure 1). Due to the missing signing block some of the files were compared
incorrectly, yet the actual differences can still be clearly recognized.

Figure 1: Differences in APKs

7

The second tool that provided a clear and understandable result was apkdiff which is actually
meant for creating patches from the differences of the files. But as the patch archive also includes
a summary file of the files with differences, the tool is useful also if just the files with differences
in them need to be located.

sha1 97 ff22e8da32324bd1c79fd7b3da8a5b0c5f6dd1
-res/raw/test_of_esteid_sk_2015.crt
-res/raw/test_of_esteid_sk_2011.crt
-res/raw/tarne.bks
-res/raw/portal.bks
-META -INF/CERT.RSA
-META -INF/CERT.SF
c0|classes.dex
c1|resources.arsc
c2|AndroidManifest.xml
c3|res/drawable -hdpi -v4/ic_close.png
c4|res/drawable -mdpi -v4/ic_close.png
c5|res/drawable -xxhdpi -v4/ic_close.png
c6|res/layout/list_item_candidate.xml
c7|res/drawable -xhdpi -v4/ic_close.png
c8|res/drawable -ldpi -v4/ic_close.png
c9|res/drawable -xxxhdpi -v4/ic_close.png
c10|META -INF/MANIFEST.MF

Listing 2: List of files with differences

Looking at the output of the apkdiff summary file (see Listing 2) it is possible to see that
there were quite a few differences in the compared binaries. First of all, there are four files in
res/raw/ folder (indicated with the “–” prefix) that are available in the distributed binary but
missing from the self compiled version. The first two .crt files seem to be X.509 certificates
of the Estonian Certification Centre (Sertifitseerimiskeskus). The other two files with the .bks

extension are BouncyCastle Keystore19 files. In both cases it is not clear why these files were
added to the distributed version and what are they used for. Nevertheless, the files which were
expected to be missing and different are the ones in the META-INF folder. As already said before,
those differences are expected and are there because the distributed version is signed and the
self-compiled version is not. What were not exactly expected, were the differences in the files
listed with prefixes from “c0” to “c9”. However, they prove the suspicion that the distributed
version was compiled using source code which differs from the source code published in GitHub.
More specifically, the changes in the res/ folder indicate that the old ic close.png icon has
been replaced with a new one and some changes have also been made to the app layout specified
in the list item candidate.xml file. Additional changes to the app visual look are indicated
by the changes in the resources.arsc file. The differences in the classes.dex file, on the
other hand, mean that in addition to the visual resources, also the Java byte code has been
changed. Last but not least, the differences in the AndroidManifest.xml are also expected since
the version code is defined there and was different.

A simple version string adjustment step would be tolerable in the process of reproducing a
build. However, the steps that introduce changes to the functionality of the app are not allowed,
because making such changes would mean that the functionality of the distributed app cannot
be verified from the source code that is publicly available. In the current case, it is already clear
that the source code which was used to compile the distributed versions, has not been published
in GitHub. Thus, trying to reproduce a matching binary by only manipulating build variants is
not possible and will be skipped.

Nevertheless, some more detailed analysis was made using diffoscope to look into the
changes that had been made in the distributed version. For this analysis additional tools –
Apktool20 and enjarify21 – were needed.

19https://cryptosense.com/bouncycastle-keystore-security/
20https://ibotpeaches.github.io/Apktool/install/
21https://github.com/Storyyeller/enjarify

8

https://cryptosense.com/bouncycastle-keystore-security/
https://ibotpeaches.github.io/Apktool/install/
https://github.com/Storyyeller/enjarify

Adding Apktool made it possible for diffoscope to also compare and show differences inside
the files included in the APK. Figure 2 confirms that the differences in AndroidManifest.xml

were indeed caused by the version differences.

Figure 2: Differences in AndroidManifest.xml

The same feature made it also possible to see the differences in the list item candidate.xml

file in more detail. Again, as suspected and now visible from Figure 3, there are actual code
differences in this file.

Figure 3: Differences in list item candidate.xml

Last but not least, adding enjarify made it possible for diffoscope to also highligh the
differences inside the classes.dex file. Thus, in Figure 4 it is possible to see that two Java class
file have been changed with the total difference of 126 bytes.

Figure 4: Differences in classes.dex
9

Going even further, diffoscope is also capable of showing the actual Java byte code dif-
ferences in the class files. For example, Figure 5 highlights in detail what are the 12 bytes of
differences in a.class file.

Figure 5: Code differences in a.class file

5 Recommendations for VVA Developers

Even though the reproduction of a matching binary was not possible, the process has led to several
insights on what should be done differently in order to make building the Vote Verification App
and verifying its distributed versions easier:

1. Any software project, especially when distributed publicly, should have clear instructions
on how to build and run the software. Having these instructions either in a README file or
in some set-up script would be recommended.

2. To help interested parties to reproduce the build from the source code published, it is
recommended to define exact environment that was used to build the distributed app
(operating system and version, SDK, JDK, Gradle etc. versions).

3. Tags should be used to mark the commits which were used to build a specific version of
the app. The tagged commit should include exactly the same files that were used to build
a specific version (excluding the private key that was used to sign the package, of course).

4. If the source code of the project is made publicly available, then it should also be kept
up to date. The level of transparency is lost if the application is developed daily, but the
source code is published only, for example, once a year. This makes tracing of the changes
harder, leading the auditors to drown in the amount of changed code.

6 Conclusion

The aim of this report was to describe the steps that are needed to verify if an open-source app
distributed in an app store is compiled from the same source code that is publicly available. Those
steps were described in the context of the Android Vote Verification App that was distributed in
Google Play Store during the I-voting period of the Estonian municipal council election held in
October 2017. The report went through the different activities that were conducted during this

10

experiment – monitoring the binaries, building the app from the source code, comparing build
result with the distributed version and trying to reproduce it based on the differences found.

Several challenges were faced during this research, starting from getting access to the applica-
tion binaries that are officially distributed only to mobile devices. In case of iOS, the downloading
task was complex enough to leave that platform out of the scope of the current work. In case
of Android, the downloading of binaries was possible, but definitely not trivial. The complexity
of the build process came from inadequate documentation, which meant that instead of being
able to follow instructions, best guesses and assumptions had to be made. Since the application
was simple and with small number of dependencies, a successful build was possible. Neverthe-
less, the instructions would have been very helpful. Last but not least, even before starting the
actual binary comparison of the distributed version to the self-compiled one, there were several
indications that the binaries will not match. The actual comparison confirmed this suspicion.
Yet, in addition to the expected differences that came from the signature block that is missing
from the self-compiled binary, there were also several other differences in the actual content of
the app. This proved that in case of the Android Vote Verification app the source code that is
publicly available, is not the one that was used to compile the app that was distributed during
the elections. This also means that reproducing the app is not possible and currently there is no
verifiable path from the source code to the distributed binaries.

This all led to several suggestions for the Vote Verification App developers, on what could
be changed to simplify the build verification process that is essential for ensuring transparency.
Currently, when the repository is not being updated and there are no instructions on how to
build the application, the purpose of the National Electoral Committee’s GitHub repository is
questionable.

References

[1] Ivo Kubjas, Tiit Pikma, and Jan Willemson. Estonian Voting Verification Mechanism Re-
visited Again. Cryptology ePrint Archive, Report 2017/081, 2017. https://eprint.iacr.

org/2017/081.

[2] Sven Heiberg and Jan Willemson. Verifiable Internet Voting in Estonia. In 6th Interna-
tional Conference on Electronic Voting 2014, (EVOTE 2014), October 28-31, 2014, Bregenz,
Austria, pages 23–28, 2014.

[3] Estonian National Electoral Committee. Source code of Estonian internet-voting system
software components, July 2013. https://github.com/vvk-ehk/.

[4] National Electoral Committee. Municipal council election 2017, November 30, 2017. https:
//www.valimised.ee/en/municipal-council-election-2017.

[5] ZDNet. Apple’s iTunes removes iOS App Store from desktop version, September 13,
2017. http://www.zdnet.com/article/apple-removes-ios-app-store-from-desktop-

versions-of-itunes/.

11

https://eprint.iacr.org/2017/081
https://eprint.iacr.org/2017/081
https://github.com/vvk-ehk/
https://www.valimised.ee/en/municipal-council-election-2017
https://www.valimised.ee/en/municipal-council-election-2017
http://www.zdnet.com/article/apple-removes-ios-app-store-from-desktop-versions-of-itunes/
http://www.zdnet.com/article/apple-removes-ios-app-store-from-desktop-versions-of-itunes/

	Introduction
	Monitoring the Apps in the App Stores
	Android
	iOS
	Vote Verification App in Google Play Store
	Downloading binaries from Google Play App Store
	Android App Monitoring System
	Monitoring the Vote Verification App in Google Play Store

	Building the Android Vote Verification App from Source Code
	Steps to build the Vote Verification App (on Ubuntu 16.04)

	Reproducing the Android Vote Verification App
	The APK file type
	Structure of an APK file

	Potential Differences in the APKs
	Comparing the APKs

	Recommendations for VVA Developers
	Conclusion

