Security Analysis of Skybrake DD5 immobilizer

Daniel Würsch

Institute of Computer Science University of Tartu

27 August 2024

Security Analysis of Skybrake DD5 immobilizer

э

< □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

2 Black-box Analysis

3 Attack Vectors

4 Conclusion

3

イロト イヨト イヨト イヨト

About car immobilizers

- Aim to prevent car theft by immobilizing the car
- Additional security layer to already existing locking mechanism
- Authenticate authorized driver by transponder or smart key

3

A B A A B A

Types of car immobilizers

Factory-fitted car immobilizer

- Installed by car manufacturer
- Integrated into regular key fob of car
- Mandatory in most countries for new cars

After-market car immobilizer

- Retrofitted for cars without secure factory-fitted car immobilizer
- Installed by authorized service partner
- Adaption driven by insurance policies

A B A A B A

Introduction

Skybrake DD5 by Autonams

Security Analysis of Skybrake DD5 immobilizer

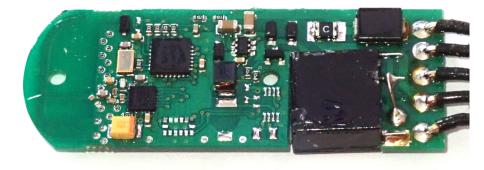
5 / 26

Table of Contents

1 Introduction

2 Black-box Analysis

3 Attack Vectors


4 Conclusion

3

イロト イヨト イヨト イヨト

Black-box Analysis

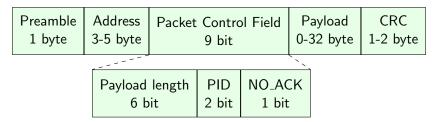
Visual inspection: Control unit

Microcontroller: Microchip PIC24F32KA302

Transceiver Chip: Nordic Semiconductor NRF24L01+

Black-box Analysis

Visual inspection: Personal transceiver


Microcontroller: Microchip PIC24F16KA101

Transceiver Chip: Nordic Semiconductor NRF24L01+

Capturing Messages

Data available from the datasheet

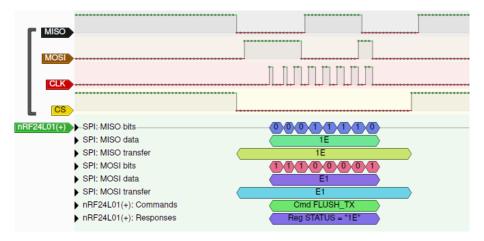
Modulation: Gaussian Frequency Shift Keying (GFSK) Frequency: 2400–2525 MHz (126 channels) Packet format as shown below

Just capture data using a software defined radio (SDR)?

Black-box Analysis

Serial Peripheral Interface

Capturing Signals


10 / 26

э

Black-box Analysis

Serial Peripheral Interface

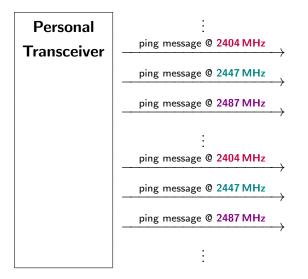
Decoding Signals

Security Analysis of Skybrake DD5 immobilizer

11 / 26

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

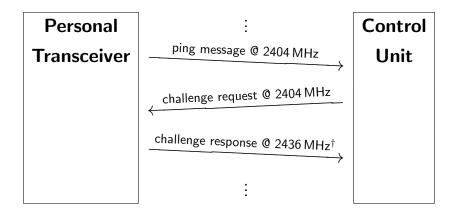
Packets sent by Skybrake DD5


- 4 byte logical address, derived from unknown algorithm
- Always has a payload of 16 bytes

Preamble	Address	Packet Control Field			Payload	
1 byte	4 byte	9 bit			16 byte	
	Payload length 6 bit		PID 2 bit	NO_AO 1 bit		

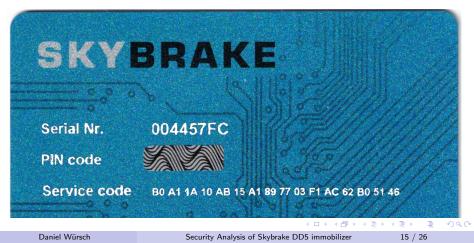
< □ > < □ > < □ > < □ > < □ > < □ >

₹ • • • • • •

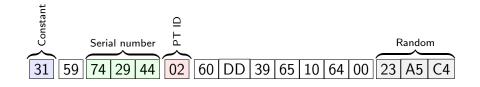

Ping Broadcast

< □ > < □ > < □ > < □ > < □ > < □ >

E - ク < (


Authentication Flow

[†] Channels for challenge response seemingly random

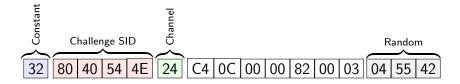

Encryption

- Messages all have length of 16 bytes
- Messages are encrypted using AES-128
- Service code (from service card) used as AES-128 key

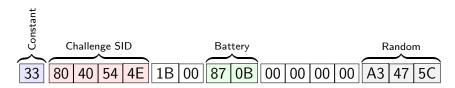
Black-box Analysis

Ping message

Security Analysis of Skybrake DD5 immobilizer


- 4 ⊒ →

∃ ≥ 16 / 26


э

Challenge Request

Challenge Response

4 A b

Table of Contents

1 Introduction

2 Black-box Analysis

3 Attack Vectors

4 Conclusion

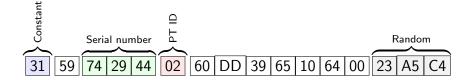
э

A D N A B N A B N A B N

How to send messages?

Nordic Semiconductor nRF52840 USB Dongle

Security Analysis of Skybrake DD5 immobilizer

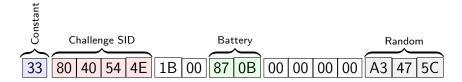

19 / 26

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Replay attacks

Ping message

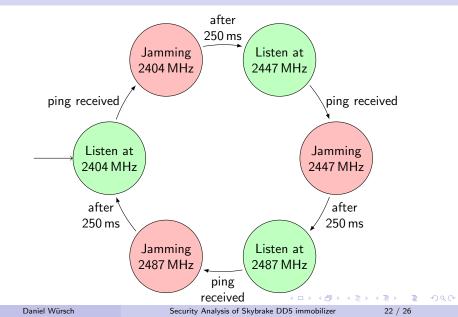


- No checks for freshness, vulnerable to replay attacks
- Does not give any benefit for an attacker
 - Does not authenticate the attacker and disable the immobilization
 - Allows attacker to receive a challenge request message

20 / 26

Replay attacks

Challenge response



Cannot be replayed by an adversary

- Freshness is checked through Challenge SID
- Adversary needs to determine correct radio channel[†]

[†] Adversary can just broadcast to all channels

Narrow-band Jamming

Emulating Personal Transceiver

Adversary can successful pass authentication knowing

- Service code from service card
- Logical address used by immobilizer[†]
- Serial number of immobilizer[†]

Can be sniffed from target personal transceiver using SDR

Table of Contents

1 Introduction

2 Black-box Analysis

3 Attack Vectors

4 Conclusion

3

A D N A B N A B N A B N

Conclusion

- General working principle of car immobilizer is known
- Secure against replaying attacks due to randomize challenge
- Security of car immobilizer depends on secrecy of the service code
 - Service code needs to be truly random
 - Service code needs to be secret
 - End user needs to keep the service code secret
- Vulnerable to narrow-band jamming attacks due to deterministic handshake channel selection algorithm

25 / 26

- 4 回 ト 4 三 ト 4 三 ト

Future work

- Is it secure?
 - Maybe, performed black-box analysis is limited
- Full security analysis requires program code from microcontrollers to answer open questions
 - Additional commands/messages supported by the car immobilizer?
 - Algorithm used to derive the logical address?
 - Algorithm used to derive the radio channels for ping messages?
 - Source of randomness (PRNG) used by immobilizer?

・ 同 ト ・ ヨ ト ・ ヨ ト