
Security Analysis of RIA’s

Authentication Service TARA

Arnis Parsovs
University of Tartu

May 28, 2021

1 Introduction

The Estonian Information System Authority (Riigi Infosüsteemi Amet – RIA)
provides a federated authentication solution TARA that can be used by public
sector institutions to authenticate ID card, Mobile-ID and Smart-ID and eID
users from other EU Member States [1].

This report discusses findings from the security analysis of TARA that
was performed in May 2021. The analysis was based on the TARA technical
specification v1.8 2021-03-19 available at [2]. The analysis focused on
the protocol flow between service providers and TARA. The security of the
authentication flows on the TARA side (i.e., how authentication using different
authentication methods is implemented by TARA) was not in the scope of this
analysis.

1.1 TARA authentication protocol

The protocol implemented by the TARA authentication service is based on
the OpenID Connect protocol [3]. The protocol involves 3 parties: a service
provider who wants to authenticate a user, the user that gets authenticated and
the TARA server that performs authentication of the user using various eID
tools. The high-level protocol flow is depicted in Figure 1.

User's browser TARAService provider 4

1
Authentication request (client_id)

2
Redirect request (code)

3

Identity token request (code)

Identity token

Figure 1: TARA authentication protocol

1



The authentication process starts with a user initiating a log in process in a
service provider’s website. The service provider redirects the user’s browser to
the TARA website together with an authentication request that among other
things contains the service provider’s identifier (the client id field). After
the user has performed a successful authentication at the TARA website, the
user’s browser is redirected back to the service provider’s website together with
a redirect request1 that among other things contains an authorization code
(the code field). The service provider makes a direct connection to the TARA
server and sends an identity token request that among other things contains
the authorization code received in the redirect request. As a response, the
TARA server returns a cryptographically signed identity token that contains
the personal data of the user. The service provider verifies the authenticity of
the identity token and based on the data therein authenticates the user.

2 Findings

In the subsections below, we discuss the issues that were found in the course of
the analysis. When possible, we provide specific recommendations on how to
solve them. The issues listed below have been ordered based on our opinion of
their significance.

2.1 Authenticity of the identity token

The identity token issued by TARA is cryptographically signed by the TARA
authentication service using the SHA-256 hash function with a 4096-bit RSA
key. The public key that service providers must use to verify the signature
is served by the same TARA server that returns the signed identity token.
Furthermore, the technical specification of TARA explicitly states that service
providers should not hardcode the public key (see Section 5.1.1 in [2]).

We find that in this configuration the signing of the token provides no
security benefit. This is so because an attacker, who is able to man-in-the-middle
the connection between a service provider and the TARA server, will be able to
sign tokens using the attacker’s own private key and provide the corresponding
public key for verification to the unsuspecting service provider.

Hence, in the current configuration the verification of the token’s signature
is irrelevant as the security of the entire process relies on a service provider
correctly authenticating the TARA server when sending the identity token
request. To authenticate the TARA server, the TLS library used by the service
provider has to verify the public key certificate of the TARA server.

The technical specification of TARA correctly notes that the service provider
has to verify the TARA server certificate. More specifically, it states that
the certificate must be verified by “using DigiCert’s root certificate or TARA
certificate as a trust anchor” (Section 5.1.2 in [2]). We point out, however, that
there are a list of things that can go wrong with the verification of the TARA
server certificate:

1The TARA technical specification uses the term “redirect request” to denote the authen-
tication response from TARA. In our opinion, the term “authentication response” used in the
OpenID Connect specification [3] is a more intuitive term to describe this request.

2



1. First of all, there is a large amount of evidence that indicates, that
in practice, it is very difficult to implement TLS certificate validation
in non-browser software correctly [4]. Usually, correct server certificate
validation requires extra effort from a software developer, and therefore it
is common to see that no certificate validation is performed, which results
in any certificate offered by the server being accepted as valid.

2. By default, it is common for TLS libraries to verify a server certificate
using Certificate Authorities (CAs) that are defined in the operating
system trust store. The recommendation to use the DigiCert’s root CA
certificate as a trust anchor is helpful, as this narrows down the number
of trusted parties (CAs) that the security of TARA relies upon. We note,
however, that using the DigiCert’s root CA certificate as a trust anchor
does not eliminate the risk that a lower-assurance domain validated2

certificate of TARA obtained by an attacker would be accepted as valid.
The recommendation to hardcode the TARA certificate as a trust anchor
would eliminate this risk, but has a drawback that service providers have
to update their implementations whenever the TARA server certificate is
renewed (which is at least every 398 days3).

3. Even if the TARA server certificate is hardcoded as a trust anchor, there
is an issue of ensuring adequate secrecy of the corresponding private key.
The current certificate4 used by the server tara.ria.ee is a wildcard
certificate that is also used on a list of other RIA servers administered
by possibly different (hopefully RIA) employees. This means that if any
of these servers are compromised to the extent that an attacker obtains
the private key corresponding to this certificate, the attacker can execute
successful man-in-the-middle attacks effectively bypassing authentication
in any service provider that uses TARA.

To summarize: (1) service providers’ implementation of the TARA server
certificate validation is susceptible to different types of failures; (2) the TARA
server certificate validation as recommended by RIA requires hardcoding of the
TARA server certificate, which has to be regularly rotated; (3) it is much harder
to ensure the secrecy of the TARA server’s private key that is shared among
different RIA servers, compared to ensuring the secrecy of a single-purpose
private key that is used for TARA identity token signing.

Based on the abovementioned, we recommend to RIA to remove the require-
ment for the DigiCert’s root CA and TARA server certificate hardcoding, but
instead require service providers to hardcode the public key that is used by TARA
to sign the identity tokens.

Implementing this recommendation would involve the removal of the TARA
public signature key endpoint, instead distributing the TARA public key to
service providers using some out-of-band means, such as sending it to the service
providers digitally signed by a representative of RIA.

2The current TARA server certificate is organization validated, meaning that it has been
issued based on a higher identity validation process than a domain validated certificate would.

3There are indications that the maximum lifespan of the TLS server certificate validity in
the future will decrease even further.

4https://crt.sh/?id=3288095677

3

https://crt.sh/?id=3288095677


The benefit of this approach is that it would remove the reliance on Web-PKI
from the trust assumptions, would provide RIA flexibility to decide on rotation
of the trust anchor (the token signing key in this case) and would provide viable
means for RIA to protect the private key of the trust anchor.

2.2 Susceptibility to Mobile-ID and Smart-ID phishing attacks

We have observed that regardless of the service provider to which a user is
authenticating via TARA, the Mobile-ID and Smart-ID authentication prompts
shown in the user’s device always display the service provider identifier “RIA
Riigi autentimisteenus” (see Figure 2).

The use of such a generic service provider identifier makes the Mobile-ID and
Smart-ID authentication process susceptible to phishing attacks. An attacker
can set up a malicious website that requires authentication using Mobile-ID or
Smart-ID. When a victim enters their Mobile-ID or Smart-ID identifier in the
malicious website, the attacker forwards it to TARA and shows to the victim
the correct Mobile-ID/Smart-ID verification code returned by TARA. If the
victim fails to notice that the Mobile-ID or Smart-ID identifier was not entered
in the authentic TARA environment and confirms the Mobile-ID/Smart-ID
authentication request on their mobile device, the attacker will be able to
authenticate on behalf of the victim to any service provider that uses TARA.

The application for joining the TARA service [5] requires service providers to
specify a short name, and the TARA documentation provides recommendations
on how to choose it [6]. However, for some reason this identifier is not used in
practice.

We recommend to RIA to display the service provider’s short name on the
user’s mobile device when the user authenticates using Mobile-ID and Smart-ID.

(a) Mobile-ID (b) Smart-ID

Figure 2: Authentication prompt on a user’s device when authenticating via TARA

4



2.3 Protection against false login attacks

The technical specification of TARA requires a service provider to include the
state parameter in the authentication request (Section 4.1 in [2]). The value
specified in the state parameter is returned by TARA back to the service
provider in the redirect request.

The state parameter can be used to prevent a cross-site request forgery
attack, in which an attacker forces a victim’s browser to submit a redirect
request to a service provider that contains an authorization code from an
authentication process in which the attacker has been authenticated at TARA.
If the state parameter was not used, the service provider would accept the
authorization code and would log the victim’s browser into the attacker’s
account at the service provider’s website. This attack is described in the TARA
documentation [7], but is not referenced in the technical specification.

Section 5.2 “Protection against false request attacks” of the TARA technical
specification describes how service providers should implement the verification of
the state parameter to prevent the cross-site request forgery attack mentioned
above. However, we note that the instructions provided in the specification are
suboptimal due to the following reasons:

1. It is stated that protection against the attack can be achieved by using
the state and nonce security codes. However, the instructions on how to
use the nonce parameter to achieve this protection are not provided. A
confusingly similar term “nonce word” is used in the description, while it
actually is not related to the nonce parameter.

2. It is stated that the HttpOnly attribute must be applied to the cookie,
but it is not stated that the Secure attribute should be applied as well
(to prevent the cookie being sent over plaintext HTTP requests).

3. The value specified in the state parameter is derived by hashing a random
value included in a cookie. It is not explained why the same protection
cannot be achieved by putting the random value that is stored in the
cookie directly into the state parameter.

4. The instructions require a service provider to introduce an additional
TARA-specific cookie, while the same can be achieved using the service
provider’s session mechanism that is already in place to maintain a web
session with the user’s browser.

We recommend to RIA to improve the instructions on how to use the state

parameter. We propose the following wording for the instructions:

The value for the state parameter has to contain at least 16 random
bytes to prevent the client application from reusing the same state

value repeatedly and prevent attackers from guessing the value.

The state parameter included in the authentication request must
be bound to the browser session of the user who initiated the
authentication process.

Preferably, the state value should be stored on the server side. If it
is stored on the browser side, it must be cryptographically protected
to prevent a malicious user from modifying the state value that is

5



associated with the user’s web session. This will prevent an attack
where a valid redirect request issued to a victim can be used in an
attacker’s browser session to authenticate on behalf of the victim5.

When receiving the redirect request, the client application must
verify that the state parameter in the redirect request match the
value for the browser session of the user from whom the request was
received.

2.4 Verification of the identity token’s state field

The state value sent in the authentication request is present in the
cryptographically signed identity token (Section 4.3.1 in [2]). However, the
TARA technical specification (Section 5.1 in [2]) does not require a service
provider to verify that the state field of the identity token contains the same
value as the one that was associated with the user’s browser session.

We see two attacks that such a check would prevent:

1. An authorization code substitution attack where a valid authorization
code issued to a victim can be used in an attacker’s browser session to
authenticate on behalf of the victim.

2. An identity token substitution attack by an attacker who has hijacked the
TLS connection between the service provider and the TARA server6.

Based on the abovementioned, we recommend to RIA to include the requirement
to check the state value when verifying the identity token.

2.5 The use of the nonce paramater

The specification mentions the nonce parameter and that it can help to prevent
replay attacks, but does not explain how it should be set and verified.

We note that the TARA server prevents identity token replay attacks as
the service providers cannot use the same authorization code more than once7.
Even if the TARA server tried to return the same identity token more than
once, this would fail as the state value present in the token would not match the
unique state value associated with the authentication session8. Hence, the secure
implementation of the protocol prevents identity token replay attacks without
the need for a service provider to remember the identifiers of the processed
identity tokens. If, however, the service provider needs to uniquely identify the
token, the mandatory state parameter that is included in the identity token
can be used for this purpose.

We recommend to RIA to remove the nonce parameter from the protocol and
specification.

5To achieve full protection against such an attack, the check described in Section 2.4 has
to be implemented as well.

6This attack is relevant only if the recommendation specified in Section 2.1 is implemented.
7While not explicitly stated in the TARA technical specification, the TARA test service in

practice implements the OpenID Connect recommendation (Section 3.1.3.2 in [3]) by verifying
that the authorization code has not been previously used.

8Assuming that the check described in Section 2.4 is implemented.

6



2.6 Protection against false authentication initiation attacks

The protection against false login attacks (Section 2.3) does not protect against
false authentication initiation attacks, where a malicious website redirects
a victim’s browser to the TARA website, specifying a client id in the
authentication request that belongs to a legitimate service provider that uses
TARA. If the service provider implements protection against false login attacks,
the attacker will not be able to trick the victim into authenticating to the
service provider. I.e., after the victim has authenticated at the TARA website,
the redirect request sent by the victim’s browser will be rejected by the service
provider. However, if the attacker is more powerful, meaning that the attacker
is able to observe the authorization code returned to the victim, the attacker
will be able to impersonate the victim on the service provider’s website.

To prevent such attacks, the TARA website should clearly show the service
provider for which the current authentication process has been initiated. In the
current user interface of the TARA website this is not made clear, although
the user may try to establish this by looking at the URL that is present in the
“Return to service provider” link (see Figure 3).

Figure 3: Authentication menu as shown on the TARA website

2.7 Expiration time of the identity token

According to the TARA technical specification (Section 6.3 in [2]), the
service provider has to obtain the identity token within 30 seconds after the
authorization code has been issued. This requirement is helpful as it guarantees
that in case the service provider was able to obtain the identity token, the
corresponding authentication process is fresh (i.e., the user has authenticated

7



at TARA in the last 30 seconds). This, however, questions whether there is
a need for further token expiration checks and why the expiration time in the
token is set to 10 minutes (Section 6.3 in [2]).

Checking the expiration time of the token is useful as it eliminates the risk
of an outdated token being accepted, if for some reason9 the requirement to
obtain the identity token in 30 seconds is not enforced on the TARA side.

The 10 minute expiration time of the token, however, seems excessive as the
verification of the token should take place at maximum in a few seconds after the
identity token is obtained from TARA using the identity token request. Hence,
a 40 second expiration time of the token would seem more meaningful. If the 10
minute expiration time of the token is there to allow service providers to have
their system time up to 10 minutes in the future, then this assumption should
be explicitly noted.

We recommend to RIA to clarify the reasoning for setting the expiration
time of identity tokens to 10 minutes.

2.8 Verification of the validity period of the identity token

The identity token contains two semantically very similar fields: iat (Issued At)
and nbf (Not Before). The iat field is described to contain “the time of issue
of the certificate”10, while the nbf field is described to contain “the validity
start time of the certificate” (Section 4.3.1 in [2]). It is not clear to us what
the purpose of the nbf field is and why it contains a different value than the
iat field. Section 5.1.5 “Verifying the validity of the certificate” of the TARA
technical specification states that the iat and nbf fields have to be verified, but
then instructs how to verify the nbf field without explaining how the iat field
should be verified.

We recommend to RIA to sort out the difference between these fields and
clarify the respective security checks.

2.9 Inclusion of the redirect URL in the requests

The application for joining the TARA service [5] requires service providers to
specify a redirect URL, where, after a successful authentication at the TARA
side, the user’s browser will be redirected together with the authorization code.
The redirect URL of the service provider is hardcoded on the TARA side and is
looked-up by TARA based on the service provider’s client id specified in the
authentication request.

According to the current specification, the service provider has to include
the same redirect URL in the authentication and identity token requests. This,
however, unnecessarily complicates the protocol and introduces the risk that due
to a coding error on the TARA side, the redirect URL submitted in a potentially
malicious request is used to perform security-critical decisions.

We recommend to RIA to remove the requirement to include the
redirect uri field in the protocol requests. Similarly, we recommend recon-
sidering the necessity to include other parameters that have fixed values (e.g.,
response type and grant type).

9For example, in case of a coding error or misconfiguration on the TARA side, or in the case
of a successful man-in-the-middle attack between a service provider and the TARA server.

10In our opinion, the term “certificate” used by the TARA technical specification to denote
the identity token is confusing.

8



3 Concluding remarks

We commend the designers of the TARA service for using the authorization
code flow to implement the protocol, since the implicit flow (e.g., as used in
the bank link protocol [8]) opens the authentication process to a variety of
additional security risks. We also commend the authors of the TARA technical
specification for explicitly listing the security checks that have to be performed
by service providers.

The findings described in this report show that there is room for clarifying
the technical specification and for hardening the protocol. By implementing
the recommendations listed in this report, the TARA protocol will achieve
protection against impersonation attacks even in the presence of an attacker
who is: (1) able to observe authentication requests sent by the user’s browser
to the TARA server; (2) able to observe and modify redirect requests returned
by the TARA server to the user’s browser; and (3) able to observe and modify
the messages exchanged between the service provider and the TARA server.

Acknowledgements. This research has been carried out with financial
support from the European Social Fund through the IT Academy programme
and from the Estonian Ministry of Economic Affairs and Communications.

References

[1] Estonian Information System Authority. The Information System
Authority’s authentication services, May 19, 2021. https://www.ria.ee/
en/state-information-system/eid/partners.html.

[2] Estonian Information System Authority. TARA Technical specification
v1.8, March 19, 2021. https://e-gov.github.io/TARA-Doku/
TechnicalSpecification.

[3] The OpenID Foundation. OpenID Connect Core 1.0 incorporating errata
set 1, November 8, 2014. https://openid.net/specs/openid-connect-
core-1_0.html.

[4] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan
Boneh, and Vitaly Shmatikov. The most dangerous code in the world:
validating SSL certificates in non-browser software. In Proceedings of the
2012 ACM Conference on Computer and Communications Security, 2012.

[5] Estonian Information System Authority. Application for joining the test
environment of the National Authentication Service (TARA) (in Estonian),
August 17, 2020. https://www.ria.ee/sites/default/files/test_
tara_liitumistaotlus_2020_0.pdf.

[6] Estonian Information System Authority. TARA Documentation: Self-help
(in Estonian), May 20, 2021. https://e-gov.github.io/TARA-Doku/
Eneseabi.

[7] Estonian Information System Authority. TARA Documentation:
Counterfeit attack and protection against it (in Estonian), May 20, 2021.
https://e-gov.github.io/TARA-Doku/Volts.

[8] Arnis Parsovs. Security Analysis of Internet Bank Authentication Protocols
and their Implementations. MSc thesis, Tallinn University of Technology,
2012. https://kodu.ut.ee/~arnis/bankauth/thesis.pdf.

9

https://www.ria.ee/en/state-information-system/eid/partners.html
https://www.ria.ee/en/state-information-system/eid/partners.html
https://e-gov.github.io/TARA-Doku/TechnicalSpecification
https://e-gov.github.io/TARA-Doku/TechnicalSpecification
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://www.ria.ee/sites/default/files/test_tara_liitumistaotlus_2020_0.pdf
https://www.ria.ee/sites/default/files/test_tara_liitumistaotlus_2020_0.pdf
https://e-gov.github.io/TARA-Doku/Eneseabi
https://e-gov.github.io/TARA-Doku/Eneseabi
https://e-gov.github.io/TARA-Doku/Volts
https://kodu.ut.ee/~arnis/bankauth/thesis.pdf


Disclosure

On 2021-05-28, this report was shared with RIA. On 2021-06-04, RIA provided
feedback on each finding covered in this report:

� Section 2.1: Authenticity of the identity token - requires a more detailed
analysis from RIA whether and how to implement this change.

� Section 2.2: Susceptibility to Mobile-ID and Smart-ID phishing attacks -
this has been already implemented in TARA, but several service providers
have not provided the short name of their application. As this affects
especially those clients, who have made their integration with TARA
before RIA made this change, additional communication will be needed
to fully resolve this security threat.

� Section 2.3: Protection against false login attacks - RIA needs to first check
the compatibility with OpenID Connect profile before implementing this
change.

� Section 2.4: Verification of the identity token’s state field - RIA will
improve the specifications.

� Section 2.5: The use of the nonce parameter - We agree that nonce
basically duplicates the state parameter. RIA will remove the nonce
parameter from specification. However, we cannot remove nonce from
the protocol as it break the interface between TARA and 300+ client
applications.

� Section 2.6: Protection against false authentication initiation attacks - this
has been already implemented in TARA, but several service providers have
not provided the short name of their application. As this affects especially
those clients, who have made their integration with TARA before RIA
made this change, additional communication will be needed to fully resolve
this security threat.

� Section 2.7: Expiration time of the identity token - the reason behind the
differences between the values was due to Apereo CAS limitations. In
TARA version 2.0 this value can be configured and RIA will implement
this change in the upcoming sprints.

� Section 2.8: Verification of the validity period of the identity token - RIA
will clarify this in the specifications.

� Section 2.9: Inclusion of the redirect URL in the requests - requires a more
detailed analysis from RIA whether and how to implement this change.
It needs to be clarified but it is possible that removing the requirement
to include the redirect uri field in the protocol requests might result
non-compliance with OpenID Connect profile, which we highly rely on.
RIA sees that the impact of this risk is also low.

10


	Introduction
	TARA authentication protocol

	Findings
	Authenticity of the identity token
	Susceptibility to Mobile-ID and Smart-ID phishing attacks
	Protection against false login attacks
	Verification of the identity token's state field
	The use of the nonce paramater
	Protection against false authentication initiation attacks
	Expiration time of the identity token
	Verification of the validity period of the identity token
	Inclusion of the redirect URL in the requests

	Concluding remarks

